Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T12:29:11.406Z Has data issue: false hasContentIssue false

Short range order around Sc atoms in Fe90Sc10 nanoglasses using fluorescence X-ray absorption spectroscopy

Published online by Cambridge University Press:  13 March 2012

A. Léon
Affiliation:
Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. e-mail: aline.leon@kit.edu; horst.hahn@kit.edu; herbert.gleiter@kit.edu
J. Rothe
Affiliation:
Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
H. Hahn
Affiliation:
Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. e-mail: aline.leon@kit.edu; horst.hahn@kit.edu; herbert.gleiter@kit.edu
H. Gleiter
Affiliation:
Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. e-mail: aline.leon@kit.edu; horst.hahn@kit.edu; herbert.gleiter@kit.edu
Get access

Abstract

X-ray absorption spectroscopy has been applied to probe the local structure of FeSc nanostructured amorphous solids around Sc atoms. At the Sc K-edge, the Fe90Sc10 nanoglass is characterized by a very short range order (EXAFS oscillations are only present up to k = 8 Å-1). A drastic difference in the phase and the amplitude of the nanoglass EXAFS signal compared to the amorphous ribbon indicating a different local structure around Sc atoms in both structures is observed. In addition, the changes in the local structure around Sc atoms are more significant than around Fe atoms.

Type
Research Article
Copyright
© EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gleiter, H., Acta Materialia 56 (2008) 5875
Gleiter, H., Metall. Materi. Trans. A Phys. Metall. Mater. Sci. 40A (2009) 1499-1509
Jing, J., Kramer, A., Birringer, R., Gleiter, H., Gonser, U., J. Non-cryst. Solids 113 (1989) 167-170
Weissmüller, J., Birringer, R., Key Eng. Mater. 77-78 (1992) 161-170
Averback, R., Hahn, H., Hofler, H., Logas, J., Appl. Phys. Lett. 57 (1990) 1745-1747
J. Fang, X. Wang, J.F. Jiang, J. Sun, H. Hahn, H. Gleiter, Nat. Mater. (2011), submitted
R. Witte, J. Fang, M. Ghafari, U. Vainio, R. Kruk, R. Brand, H. Gleiter (2011), to be published
Ren, H., Ryan, D., J. Appl. Phys. 73 (1993) 5494-5496
Ghafari, M., Brand, R., Keune, W., Hyperfine interactions 42 (1988) 931-934
Day, R.K., Dunlop, J., Foley, C., Ghafari, M., Pask, H., Solid State Communications 56 (1985) 843-845
Sopu, D., Albe, K., Ritter, Y., Gleiter, H., Appl. Phys. Lett. 94 (2009) 192911
Granqvist, C., Buhrmann, R., J. Appl. Phys. 47 (1976) 2200-2219
H. Gleiter, Proceedings of the second Risø International Symposium on Metallurgy and Materials Science, 1981, pp. 15-22