Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T00:16:45.923Z Has data issue: false hasContentIssue false

The crystal structure of epistilbite

Published online by Cambridge University Press:  14 March 2018

A. J. Perrotta*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago 37, Illinois, U.S.A.

Summary

The crystal structure of epistilbite ((Ca2·59Na1·06K0·10) (Al6·29Si17·71O48).15·74H2O; C2/m; a = 9·08, b = 17·74, c = 10·25±0·01 Å; β = 124·54±0·05°) was determined by 3-D least-squares methods. The alumino-silicate framework is composed of 4-, 5-, and 8-membered rings of tetrahedra. There are two sets of intersecting channels each defined by 8-membered rings. The (Ca, Na) atoms in the channels are in contact with seven water molecules and two oxygen atoms giving a coordination of nine at a cut-off distance of 2·77 Å. The average tetrahedral distance is lower than for anhydrous framework alumino-silicates but consistent with some other zeolite structures. Partial Al-Si ordering exists with one tetrahedron occupied preferentially by aluminum. This tetrahedron contains the two oxygen atoms that are coordinated with the (Ca, Na) atom.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berghuis, (J.), Haanappel, (I. J. M.), Potters, (M.), Loopstra, (B. O.), Mac-Gillavry (C. H.), and Veenendaal, (A. L.), 1955. Aca Cryst., vol. 8, p. 478.Google Scholar
Bragg, (W. L.), 1937. Atomic Structure of Minerals, Cornell University Press.Google Scholar
Bond, (W. L.), 1943. Bell. Syst. Tech. Journ., vol. 22, p. 145.Google Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (d.), 1963. Rock-forming minerals, vol. 4, Longmans, London.Google Scholar
Fischer, (K.), 1963. Amer. Min., vol. 48, p. 664.Google Scholar
Fischer, (K. F.) and Meier, (W. M.), 1965. Fortschr. Min., vol. 42, p. 50.Google Scholar
Gottardi, (Cx.) and Meier, (W. M.), 1963. Zeits. Krist., vol. 119, p. 53.Google Scholar
Hahn, (T.) and Buerger, (M. J.), 1955. Ibid., vol. 106, p. 308.Google Scholar
Kamb, (W. B.), 1960. Acta Cryst., vol. 47, p. 376.Google Scholar
Kerr, (I.), 1964. Nature, vol. 202, p. 589.Google Scholar
Meier, (W. M.), 1961. Zeits Krist., vol. 115, p. 439.Google Scholar
Perrotta, (A. J.) and Smith, (J. V.), 1964. Acta Cryst., vol. 17, p. 857.Google Scholar
Perrotta, (A. J.) and Smith, (J. V.), 1965. Min. Mag., vol. 35, p. 558.Google Scholar
Ramachandra, (G. N.) and Srinivasan, (R.), 1959. Acta Cryst., vol. 12, p. 410.Google Scholar
Sadanaga, (R.), Marumo, (F.), and Takéuchi, (Y.), 1961. Ibid., vol. 14, p. 1153.Google Scholar
Slaughter, (M.), 1965. Private communication.Google Scholar
Smith, (J. V.) and Bailey, (S. W.), 1963. Acta Cryst., vol. 16, p. 801.Google Scholar
Slaughter, (M.), 1963. Min. Soc. Amer. Special Paper 1, p. 281.Google Scholar
Steinfink, (H.), 1962. Acta Cryst., vol. 15, p. 644.Google Scholar
Strunz, (H.) and Tennyson, (C.), 1956. Neues Jahrb. Min., Monatsh., vol. 11, p. 1.Google Scholar
Vaughn, (P. A.), 1966. Acta Cryst., vol. 21, p. 983.Google Scholar
Yuk-Nevich, (G. V.) and Senderov, (E. E) 1963. Geoehcm. (transl. of ), no. 1, pp. 48-57 (M.A. 10-625).Google Scholar
Zoltai, (T.) and Buerger, (M. J.), 1959. Zeits. Krist., vol. 111, p. 129.Google Scholar