Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T05:08:58.115Z Has data issue: false hasContentIssue false

Rare earths in some niobate-tantalates

Published online by Cambridge University Press:  14 March 2018

J. R. Butler*
Affiliation:
Imperial College, South Kensington, London, S.W. 7

Summary

Rare-earth distribution has been determined for fourteen niobatetantalates containing essential rare earths. Those minerals with more than about 15 % TiO2 (and corresponding to either priorites or members of the euxenite-polycrase series) have Yt as the dominant rare earth with the heavier lanthanons in excess of the lighter lanthanons. Those minerals with less than about 4 % TiO2 and less than about 30 % (Yt,Ln)2O3 (and corresponding to samarskites) also have Yt as the dominant rare earth but they show a marked concentration of Gd + Tb + Dy over the other lanthanons. It is tentatively suggested that this power of selective lanthanon enrichment may be characteristic of samarskite among the niobate-tantalates examined.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, (L. H.), 1952. Geochimica Acta, vol. 2, p. 155.Google Scholar
Ahrens, (L. H.), 1953. Ibid., vol. 3, p. 1.Google Scholar
Bermas, (J.), 1955. Amer. Min., vol. 40, p. 805 [M.A. 13-260.]Google Scholar
Bjørlykee, (H.), 1935. Norsk Geol. Tidsskr., vol. 14, p. 211 [M.A. 6-214].Google Scholar
Bowie, (S. H. U.); 1949. A prospectors' handbook to radioactive mineral deposits. H. M. Geological Survey, 1949.Google Scholar
Brøgger, (W. C.), 1906. Skrifter Vidensk.-Selsk. Christiania, Math.-Naturv. Klasse, no. 6, p. 92.Google Scholar
Butler, (J. R.), 1957a. Spectrochimica Acta, vol. 9, p. 332.Google Scholar
Butler, (J. R.), 1957b. Geochimica Acta, vol. 12, p. 190.Google Scholar
Butler, (J. R.), 1957c. Amer. Min., vol. 42, p. 67.Google Scholar
Dixon, (P.), and Wylie, (A. W.), 1951. Nature, London, vol. 167, p. 526.Google Scholar
Goldschmidt, (V. M.) and Thomassen, (L.), 1924. Skrffter Vidensk.-selsk. Kristiania, I. Mat.-naturv. Kl., no. 5 [M.A. 3-261].Google Scholar
Gordon, (L.), Vanselow, (C. H.), and Willard, (H. H.), 1949. Anal. Chem., vol. 21, p. 1323.Google Scholar
Hillebrand, (G. E. F.), Bright, (H. A.), and Hoffman, (J. I.), 1953. Applied Inorganic Analysis, 2nd edn (John Wiley & Sons, New York).Google Scholar
Kerr, (Paul F.) and Holland, (H. D.), 1951. Amer. Min. vol. 36, p. 563 [M.A. 11-436].Google Scholar
Lokka, (Lauri), 1928. Bull. Comm. Géol. Finlande, no. 82, p. 68 [M.A. 4-249].Google Scholar
Meyer, (R. J.) and Speter, (M.), 1910. Chem. Zeitung, vol. 34, p. 306.Google Scholar
Murata, (K. J.), Rose, (H. J., Jr.), and Carron, (M. K.), 1953. Geochimica Acta, vol. 4, p. 292.Google Scholar
Ringwood, (A. E.), 1955. Ibid., vol. 7, p. 189 and p. 242.Google Scholar
Sahama, (Th. G.) and Vähätalo, (Veikko), 1939. Bull. Comm. Géol. Finlande, no. 125, p. 97 [M.A. 8-274].Google Scholar
Suess, (Hans E.) and Urey, (Harold C.), 1956. Review Mod. Physics, vol. 28, p. 53.Google Scholar
Williams, (A. F.), 1952. Journ. Chem. Soc., p. 3155.Google Scholar
Wylih, (A. W.), 1954. Amer. Min., vol. 39, 1 p. 667 [M.A. 12-579.]Google Scholar