Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T23:51:07.019Z Has data issue: false hasContentIssue false

Cation and anion substitutions in the humite minerals

Published online by Cambridge University Press:  14 March 2018

P. H. Ribbe
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, U.S.A.
G. V. Gibbs
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, U.S.A.
Norris W. Jones
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, U.S.A.

Summary

The humites are structurally analogous to olivine wherein the replacement of four oxygen by four (F,OH) anions in the slightly distorted, hexagonal close-packed array is balanced by the replacement of one tetrahedrally coordinated Si by a tetrahedral void, according to the general formula Mg2xSix-1O4x-4(F,OH)4 where x = 3, 5, 7, 9. In humites the key structural units are not ‘olivine and sellaite (or brucite) layers’, as previously assumed, but are zigzag chains of edge-sharing octahedra, just as in olivines. It is shown that for humites and olivines alike the unit cell parameters a, b, and d001/n and the cell volume (normalized to one-half the mean anion-anion distance along the normal to (001)) vary linearly with the average radius of the octahedrally coordinated cation in the chain.

Substitutions of (F,OH) for O and vacancies for Si have second-order effects on the unit cell parameters, causing a linear decrease of the normalized cell volume with increase in F/O ratio in the synthetic series forsterite-humite-norbergite. Comparison of the crystal structures of forsterite and norbergite shows that the polyhedral distortions in norbergite are smaller than in forsterite in accord with the decreased number of shared edges: the fluorines in norbergite are bonded to three Mg atoms whereas all anions in forsterite are bonded to three Mg and one Si atom.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, (L. H.), 1952. Geochimica Acta, vol. 2, p. 155.Google Scholar
Bancroft, (G. M.) and Burns, (R. G.), 1968. Papers and Proc. 5th Gen. Meeting I.M.A., p. 36. Min. Soc., London.Google Scholar
Birle, (J. D.), Gibbs, (G. V.), Moore, (P. B.), and Smite, (J. V.), 1968. Amer. Min., vol. 53, in press.Google Scholar
[Borneman-Starynkevich, (I. D.) and Myasnikov, (V. S.)] 1950. (Compt. Rend. Acad. Sci. URSS), vol. 71, p. 137 [M.A. 11-406].Google Scholar
Bradshaw, (R.) and Leake, (B. E.), 1964. Min. Mag., vol. 33, p. 1066.Google Scholar
Bragg, (L.) and Claringbull, (G. F.), 1965. Crystal structnres of minerals, London, G. Bell and Sons.Google Scholar
Buckle, (E. R.) and Taylor, (H. F. W.), 1958. Amer. Min., vol. 43, p. 818.Google Scholar
Caron, (L. G.), Cantoro, (R. P.), and Newnham, (R. E.), 1965. Journ. Phys. Chem. Solids, vol. 26, p. 927.Google Scholar
Christie, (O. H. J.), 1965. Norsk geol. tidsskr., vol. 45, p. 429.Google Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1962. Rock-forming minerals, vol. 1. New York, John Wiley & Sons.Google Scholar
Gibbs, (G. V.) and Ribbe, (P. H.), 1968. I.M.A. Meetings, Prague. Abstract.Google Scholar
Henriques, (A.), 1956. Arkiv Min. Geol., vol. 2, p. 255.Google Scholar
Hurlbut, (C. S., Jr.), 1961. Amer. Min., vol. 46, p. 549.Google Scholar
Jones, (N. W.), Ribbe, (P. H.), and Gibbs, (G. V.), 1967. Progr. Geol. Soc. Amer. Ann. Meetings, New Orleans. Abstract, p. 113.Google Scholar
Lee, (D. E.), 1955. Stanford Univ. Publ. Geol. Sciences, vol. 5, p. 13.Google Scholar
Moore, (P. B.), 1967. Amer. Min., vol. 52, p. 1226.Google Scholar
Onken, (H.), 1965. Tschermaks Min. Petr. Mitt., vol. 10, p. 34.CrossRefGoogle Scholar
Pauling, (L.), 1929. Journ. Amer. Chem. Soc., vol. 51, p. 1010.Google Scholar
Rankama, (K.), 1947. Amer. Min., vol. 32, p. 146.Google Scholar
Sahama, (Th. G.), 1953. Acud. Sci. Fennicae Annales, Set. A Iii, no. 31.Google Scholar
Smith, (D. K.), Majumdar, (A.), and Ordway, (F.), 1965. Acta Cryst., vol. 18, p. 787.CrossRefGoogle Scholar
Taylor, (W. H.) and West, (J.), 1928. Proc. Roy. Soc. London, Ser. A, vol. 117, p. 517.Google Scholar
Taylor, (W. H.) and West, (J.), 1929. Zeits. Krist., vol. 70, p. 461.Google Scholar
Van Valkenburg, (A.), 1961. Journ. Res. Nat. Bur. Standards, Ser. A, vol. 65a, p. 415.Google Scholar
Yoder, (H. S.) and Sahama, (Th. G.), 1957. Amer. Min., vol. 42, p. 475.Google Scholar