Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T03:21:28.511Z Has data issue: false hasContentIssue false

The determination of the orientation of section planes of meteoritic irons

Published online by Cambridge University Press:  14 March 2018

Max H. Hey*
Affiliation:
Mineral Department, British Museum

Extract

The Widmanstetter figures on a general plane section of a meteoritic iron of the octahedrite class consist of kamacite bands running in four directions, the traces of the four planes of the octahedron, while tessellated octahedrites show three more sets of bands, the traces of the cube planes. The angles which these bands make with one another give data which are in principle sufficient to define the crystallographic axes of the iron, but in practice there does not appear to be any simple direct method of effecting this definition. In the following, two simpler cases are first discussed, followed by a method for the general case somewhat shorter than any published method I am aware of, and by methods for orientation from the Neumann lines and from inclusions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1872 Tschermak, G., Denkschr. Math.-naturwiss. Cl. Akad. Wiss. Wien, vol. 31, p. 192.Google Scholar
1881 Brezina, A., Denkschr. Math.-naturwiss. Cl. Akad. Wiss. Wien, vol. 44, p. 121.Google Scholar
1886 Becke, F., Tschermaks Min. Petr. Mitt., vol. 7, p. 93.CrossRefGoogle Scholar
1891 Goldschmidt, V., Zeits. Kryst. Min., vol. 22, p. 41.Google Scholar
1892 Kunz, G. F. and Weinschenk, E., Amer. Journ. Sci., ser. 3, vol. 43, p. 424.CrossRefGoogle Scholar
1898 Fedorov, E. S., Zeits. Kryst. Min., vol. 30, p. 9.Google Scholar
1899 Stöber, F., Bull. Soc. Franç. Min., vol. 22, p. 42.Google Scholar
1902 Berwerth, F., Sitzungsber. Akad. Wiss. Wien, Math.-naturwiss. CI., vol. 111, Abt. I, p. 646.Google Scholar
1902 Brezina, A. and Cohen, E., Jahresheft Ver. vaterl. Naturkunde Württemberg, vol. 58, p. 292.Google Scholar
1904 Brezina, A., Sitzungsber. Akad. Wiss. Wien, Math.-naturwiss. Cl., vol. 113, Abt. I, p. 1.Google Scholar
1909 Himmelbauer, A., Tschermaks Min. Petr. Mitt., vol. 28, p. 153.CrossRefGoogle Scholar
1910 Rinne, F., Neues Jahrb. Min., vol. 1, p. 115.Google Scholar
1922 Barker, T. V., Graphical and tabular methods in crystallography. London. [M.A. 2–1.]Google Scholar
1923 Belaiew, N. T., Journ. Inst. Metals, vol. 29, p. 379 ; Crystallization of metals. London, p. 72. [M.A. 2–87.]Google Scholar
1926 Young, J., Proc. Roy. Soc. London, Ser. A, vol. 112, p. 630. [M.A. 3–259.]Google Scholar
1927 Bøggild, O. B., Meddel. om Grønland, vol. 74, p. 11. [M.A. 3–535.]Google Scholar
1928 Leonhardt, J., Neues Jahrb. Min., vol. 58, p. 179. [M.A. 3–533, 4–122.]Google Scholar
1928 Smith, S. W. J., Dee, A. A., and Young, J., Proc. Roy. Soc. London, Ser. A, vol. 121, pp. 477, 486, 501. [M.A. 4–121.]Google Scholar
1930 Kurdjumow, G. and Sachs, G., Zeits. Physik, vol. 64, p. 325.CrossRefGoogle Scholar
1930 Spencer, L. J., Min. Mag., vol. 22, p. 271.Google Scholar
1930 Young, J., Min. Mag., vol. 22, p. 382.Google Scholar
1931 Mehl, R. F. and Barrett, C. S., Trans. Amer. Inst. Min. Met. Eng., vol. 93, p. 78. [M.A. 5–152.]Google Scholar
1932 Heide, F., Herschkowitsch, E., and Preuss, E., Chemie der Erde, vol. 7, p. 483. [M.A. 5–300.]Google Scholar
1933 Smith, D. W., Trans. Amer. Inst. Min. Met. Eng., vol. 164, p. 48.Google Scholar
1934 Borchert, W. and Ehlers, J., Zeits. Krist., vol. 89, p. 553. [M.A. 6–11.]Google Scholar
1934 Mehl, R. F. and Smith, D. W., Trans. Amer. Inst. Min. Met. Eng., vol. 113, p. 203.Google Scholar
1934 Mehl, R. F., Barrett, C. S., and Jerabek, H. S., Trans. Amer. Inst. Min. Met. Eng., vol. 113, p. 211.Google Scholar
1937 Nishiyama, Z., Sci. Rep. Imp. Univ. Tôhoku, vol. 23, p. 637.Google Scholar
1937 Barrett, C. S., Metals Technology (Amer. Inst. Min. Met. Eng.), vol. 4, no. 5, techn. publ. no. 819.Google Scholar
1937 Derge, G. and Kommel, A. R., Amer. Journ. Sci, ser. 5, vol. 34, p. 203. [M.A. 7–63.]CrossRefGoogle Scholar
1937 Mehl, R. F. and Derge, G., Metals Technology (Amer. Inst. Min. Met. Eng.), vol. 4, no. 3, techn, publ. no 797. [M.A. 7–372.]Google Scholar
1938 Buddhue, J. D., Pop. Astron., Northfield, Minnesota, vol. 46, p. 282. [M.A. 7–172.]Google Scholar
1939 Smith, S. W. J. and Young, J., Nature, London, vol. 143, p. 384. [M.A. 7–269.]Google Scholar
1939 Young, J., Phil. Trans. Roy. Soc. London, Ser. A, vol. 238, p. 393. [M.A. 7- 536.]Google Scholar
1941 Spencer, L. J., Min. Mag., vol. 26, p. 19, pls. I, II.Google Scholar