Published online by Cambridge University Press: 14 March 2018
When a mineral fragment is brought under the influence of an electrostatic charge, its behaviour depends chiefly upon the conductivity of the mineral and that of the surface on which it is lying. This fact can be effectively demonstrated by placing fragments of amber (sp. gr. about 1.1) and pyrite (sp. gr. about 5) on a metallic surface, such as that of a copper plate, and noting their behaviour when a rod of vulcanite, which has been electrified by rubbing with cat's skin, is brought near them. Under these conditions a small fragment of dry amber, weighing not more than one milligram, is not attracted to the rubbed rod, although the rod be brought almost in contact with it; whilst a large piece of pyrite weighing as much as 150 milligrams jumps visibly from the plate with the rod held at some distance from it.
Page 263 note 1 Negreano, D., ‘Procédé de séparation électrique de la pattie métallique d'un minerai de sa gangue.’ Compt. Rend. Acad. Sci. Paris, 1902, vol. cxxxv, p. 1108 ; Électro-chimie, Paris, 1903, vol. iii, pp. 26-27.Google Scholar
Page 264 note 1 Negreano, D., ‘Séparation électriquo des poudres métalliques do la matière inerte, et de la partie métallique d'un minerai de sa gangue.’ Compt. Rend. Acad. Sci. Paris, 1908, vol. cxxxvi, pp. 964–965 Google Scholar.
Page 264 note 2 Blake, L. I., ‘Electrostatic concentration.’ Engineering and Mining Journal, New York, 1905, vol. lxxix, p. 1086 Google Scholar. Also U. S. Patentst Nos. 668791 and 668792, of February, 1901.