Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T16:23:16.223Z Has data issue: false hasContentIssue false

The hydrated calcium silicates riversideite, tobermorite, and plombierite

Published online by Cambridge University Press:  14 March 2018

J. D. C. McConnell*
Affiliation:
Department of Mineralogy and Petrology, University of Cambridge

Extract

In a recent paper Taylor has shown that three distinct hydration levels exist within the ‘calcium silicate hydrate (l)’ group of artificial preparations (Taylor, 1953a, p. 168). The individual hydrates may be distinguished from the position of the 002 reflection in X-ray powder photographs. The d spacings corresponding to the three hydrates of this group examined during the present investigation are 14.6, 11.3, and 9.6 Å. These hydrates have H2O : SiO2 molar ratios of approximately 2.0, 1.0, and 0.5 respectively.

A recent examination of the minerals crestmoreite and riversideite (Taylor, 1953b) has shown that both these minerals are intimate inter-growths of members of the above hydrate series with the mineral wilkeite. Both the artificial preparations and the crestmoreite-riversideite intergrowths have failed to provide material suitable for detailed optical study.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barshad, (I.), 1948. Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves, and water content. Amer. Min., vol. 33, pp. 655-78. [M.A. 10-462.]Google Scholar
Bessey, (G. E.), 1938. The calcium aluminate and silicate hydrates. Symposium on the chemistry of cements. Stockholm, 1938, pp. 178-215.Google Scholar
Claringbull, (G. F.) and Hey, (M. H.), 1952. A re-examination of tobermorite. Min. Mag., vol. 29, pp. 960-962.Google Scholar
Daubrée, (G. A.), 1858a. Mémoire sur les dépôts minéraux formés par les sources thermales de Plombières, avant et pendant la période actuelle. Première partie. Formation contemporaine des zéolithes. Compt. Rend. Acad. Sci. Paris, vol. 46, pp. 1086-1090.Google Scholar
Daubrée, (G. A.) 1858b. Sur la relation des sources thermales de Plombières avec les filons métalliféres et sur la formation contemporaine des zéolithes. Annales des Mines, ser. 5, vol. 13, pp. 227-256.Google Scholar
Eakle, (A. S.), 1917. Minerals associated with the crystalline limestone at Crestmore, Riverside County, California. Bull. Dept. Geol. Univ. California, vol. 10, no. 19, pp. 327-360.Google Scholar
Flint, (E. P.), McMurdie, (H. f.), and Wells, (L. S.), 1938. Formation of hydrated calcium silicates at elevated temperatures and pressures. Journ. Res. Nat. Bur. Standards U.S.A., vol. 21, pp. 617-638. [M.A. 7-283.]Google Scholar
Heddle, (M. F.), 1880. Preliminary notice of substances which may prove to be new minerals. Min. Mag., vol. 4, pp. 117-123.Google Scholar
Taylor, (H. F. W.), 1950. Hydrated calcium silicates, Part I. Compound formation at ordinary temperatures. Journ. Chem. Soc. London, pp. 3682-3690. [M.A. 11-314.]CrossRefGoogle Scholar
Taylor, (H. F. W.) 1953a. Hydrated calcium silicates Part V. The water content of calcium silicate hydrate (I). Ibid., pp. 163-171. [M.A. 12-172.]Google Scholar
Taylor, (H. F. W.) 1953b. Crestmoreite and riversideite. Min. Mag., vol. 30, pp. 155-165.Google Scholar
Tilley, (C. E.), 1931. The dolerite-chalk contact of Scawt Hill, Co. Antrim. The production of basic alkali-rocks by the assimilation of limestone by basaltic magma. Min. Mag., vol. 22, pp. 439-68.Google Scholar
Walker, (G. F.), 1951. Vermiculites and some related mixed-layer minerals. X-ray identification and crystal structures of clay minerals. Min. Soc. London, pp. 199-223.Google Scholar