Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T05:55:33.737Z Has data issue: false hasContentIssue false

On the relation of chamosite and daphnite to the chlorite group1 (With Plates XVIII and XIX.)

Published online by Cambridge University Press:  14 March 2018

A. F. Hallimond*
Affiliation:
Museum of Practical Geology, London

Extract

There is a close optical and chemical resemblance between chamosite, the chloritic mineral of the bedded ironstones, and daphnite, a low-temperature vein-chlorite common in some of the Cornish tin mines. New material has made it possible to undertake a fresh comparison of the two minerals: chemical analyses have been made by Mr. C. O. Harvey, chemist to H.M. Geological Survey, and a report on the X-ray measurements is contributed by Mr. F. A. Bannister, of the Mineral Department of the British Museum.

The new analysis of chamosite agrees with the simple formula previously assigned: X-ray examination of material from several localities has now established the distinctive crystalline nature of this fine-grained mineral, which differs structurally from ordinary chlorites such as clinochlore. Daphnite, on the other hand, has the ordinary chlorite structure, but the new analysis fully confirms Tschermak's original opinion that it cannot be represented chemically as a mixture of serpentine and amesite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Published by permission of the Director, Geological Survey and Museum.

References

Agar, (W. M.) and Emendorfer, (E. H.), 1937. Manganiferous prochlorite from Hawleyville, Conn. Amer. Journ. Sci., set. 5, vol. 34, pp. 7780. [M.A. 7–258.]Google Scholar
Chernykh, (V. V.) in Kurnakov, (N. S.) and Chernykh, (V. V.), 1926. Physicochemische Untersuchung der Serpentine und Chlorite. Mém. Soc. Russe Min., ser. 2, vol. 55, pp. 183194.Google Scholar
Deans, (T.), 1934a. The spherulitic ironstones of west Yorkshire. Geol. Mag. London, vol. 71, pp. 4965.Google Scholar
Deans, (T.) 1934b. Some oolitic ironstones from the Coal Measures of Yorkshire. Trans. Leeds Geol. Assoc., vol. 5, pp. 161187.Google Scholar
Dixon, (B. E.), 1930. Summary of Progress for 1929, Mem. Geol. Surv. Great Britain, pt. I, p. 98.Google Scholar
Eyles, (V. A.), 1930. Economic geology of the Ayrshire coalfields. Area III. Mem. Geol. Surv. Scotland, pp. 6768.Google Scholar
Gossner, (B.), 1935. Über Cronstedtit yon Kisbánya. Zentr. Min., Abt. A, pp. 195201. [M.A. 6–333.]Google Scholar
Hallimond, (A. F.), 1925. Iron ores: bedded ores of England and Wales. Spec. Rep. Min. Res., Mere. Geol. Surv. Great Britain, vol. 29. With appendix by F. R. Ennos and R. Sutcliffe: On the estimation of the chlorite in sedimentary rocks.Google Scholar
Hallimond, (A. F.), 1926. On the chemical classification of the mica group. II. The basic micas. Min. Mag., vol. 21, pp. 2533.Google Scholar
Holzner, (J.), 1938. Eisenchlorite aus dem Lahngebiet.… Neues Jahrb. Min., Abt. A, Beil.-Bd. 73, pp. 389418. [M.A. 7–408.]Google Scholar
Jung, (H.) and Köhler, (E.), 1930. Untersuchungen über den Thuringit von Schmiedefeld in Thüringen. Chem. Erde, vol. 5, pp. 182200. [M.A. 4–334.]Google Scholar
Jung, (H.), 1931. Untersuchungen über den Chamosit yon Schmiedefeld i. Thür. Chem. Erde, vol. 6, pp. 275306. [M.A. 5–40.]Google Scholar
Kenngott, (A.), 1866. Mitt. Über Pyrophyllit… Vierteljahrsschrift der Naturforsch. Gesell. Zürich, vol. 11, pp. 240259.Google Scholar
Kunitz, (W.), 1924. Die Beziehungen … der Glimmergruppe. Neues Jahrb. Min., Abt. A, Beil.-Bd. 50, pp. 365413. [M.A. 2–424.]Google Scholar
McMurchy, (R. C.), 1934. The crystal structure of the chlorite minerals. Zeits. Krist., vol. 88, pp. 420432. [M.A. 6–45.]Google Scholar
Orcel, (J.), 1927. Recherches sur la composition chimique des chlorites. Bull. Soc. Franç. Min., vol. 50, pp. 75454.Google Scholar
Pulfrey, (W.), 1933. The iron-ore oolites and pisolites of North Wales. Quart. Journ. Geol. Soc. London, vol. 89, pp. 401430.Google Scholar
Radley, (E. G.), 1920. The Mesozoic rocks of Applecross. … Mere. Geol. Surv. Scotland, p. 35.Google Scholar
Sahlbom, (N.) in Nockolds, (S. R.) and Richey, (J. E.), 1939. Replacement veins in the Kourne Mts. granites, N. Ireland. Amer. Journ. Sci., vol. 237, pp. 2747. [M.A. 7–305.]Google Scholar
Shannon, (E. V.), 1926. The minerals of Idaho. Bull. U.S. Nat. Mus., no. 131, p. 378. [M.A. 3–130.]Google Scholar
Simpson, (E. S.), 1936. Contributions to the mineralogy of Western Australia. Series IX. Journ. Roy. Soc. W. Australia, vol. 22, pp. 118. [M.A. 6–363.]Google Scholar
Simpson, (E. S.) 1937. Ditto. Series X. Ibid., vol. 23, pp. 1735. [M.A. 7–114.]Google Scholar
Tschermak, (G.), 1891. Die Chloritgruppe, II. Theil. Sitzungsber. Akad. Wiss. Wien, Math.-nat. Kl., vol. 100, Aht. 1, pp. 29107.Google Scholar
Wilson, (G. V.), 1922. The Ayrshire bauxitic clay. Mem. Geol. Surv. Scotland. [M.A. 2–556.]Google Scholar
Wilson, (G. V.) 1930. Geology of North Ayrshire. Mem. Geol. Surv. Scotland, pp. 209214.Google Scholar
Winchell, (A. N.), 1936. A third study of chlorite. Amer. Min., vol. 21, pp. 642651. [M.A. 6–532.]Google Scholar