Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T00:35:45.600Z Has data issue: false hasContentIssue false

Pantelleritic liquids and their phenocrysts

Published online by Cambridge University Press:  14 March 2018

I. S. E. Carmichael*
Affiliation:
Department of Geology, Imperial College of Science and Technology

Summary

The phenocrysts of four porphyritic obsidians from Pantelleria have been analysed chemically, together with the residual glasses (liquids). Three new analyses of anorthoclase (one partial analysis), two of sodic ferrohedenbergite, one of fayalitic olivine, and two of cossyrite are presented together with their optical properties, and the relationship of these phenocrysts to their liquids is considered.

The experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O show that for synthetic liquids of similar composition to the normative salic constituents of the pantelleritic liquids, a potassic alkali feldspar crystallizes, whereas in the pantelleritic liquids phenocrysts of anorthoclase (Ab67–Ab61) occur. It is suggested that sodium metasilicate, which appears in the norms of all the pantelleritic liquids, may be responsible for the divergence in trend between the synthetic feldspar-liquid tie-lines and the pantelleritic feldspar-liquid tie-lines.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoxi, (K.), 1959.Petrology of alkali rocks of the Iki Islands and Higashi-matsuura district, Japan. Sci. Rept. Tohoku Univ., ser. 3 (Min., Petr., Geol.), vol. 6, p. 261 [M.A. 14–361].Google Scholar
Basta, (E.Z.), 1957.Accurate determination of the cell dimensions of magnetite. Min. Mag., vol. 31, p. 431.Google Scholar
Bowen, (N.L.), 1937.A note on aenigmatite. Amer. Min., vol. 22, p. 139 [M.A. 7–28].Google Scholar
Bowen, (N.L.), and Schairer, (J.F.), 1935.The system MgO-FeO-SiOv Amer. Journ. Sci., ser. 5, vol. 29, p. 151 [M.A. 6–352].Google Scholar
Bowen, (N.L.), and Schairer, (J.F.), and Willems (H. W. V.), 1930.The ternary system Na2SiO3-Pe203- SiO2. Ibid., vol. 20, p. 405 [M.A. 4–385].Google Scholar
Bowen, (N.L.), and Tuttle (0. F.), 1950.The system NaA1Si3Os-KA1SiaOs-H20. Journ. Geol., Chicago, vol. 58, p. 489 [M.A. li-325].Google Scholar
Broch, (O.A.), 1946. Two contributions to Antarctic petrography. Scientific results of the Norwegian Antarctic expeditions 1927–1928: No. 25. Norske Vidensk. Akad., Oslo.Google Scholar
Brown, (G.M.), 1957.Pyroxenes from the early and middle stages of fractionation of the Skaergaard intrusion, East Greenland. Min. Mag., vol. 31, p. 511.Google Scholar
Brown, (G.M.), 1960.The effects of ion substitution on the unit cell dimensions of the common elinopyroxenes. Amer. Min., vol. 45, p. 15 [M.A. 15–143].Google Scholar
Buddington, (A.F.), 1939. Adirondack igneous rocks and their metamorphism. Mere. Geol. Soc. Amer., no. 7.CrossRefGoogle Scholar
Campbell Smith, (W.C.), 1931.A classification of some rhyolites, trachytes, and phonolites from part of Kenya Colony, with a note on some associated basaltic rocks. Quart. Journ. Geol. Soc., vol. 87, p. 212 [M.A. 4–510].Google Scholar
Carmichel, (I. S. E.), 1960.. The pyroxenes and olivines from some Tertiary acid glasses. Journ. Petrology, vol. 1, p. 309.Google Scholar
Carmichel, (I. S. E.) 1960b. The feldspar phenocrysts of some Tertiary acid glasses. Min. Mag., vol. 32, p. 587.Google Scholar
Carmichel, (I. S. E.) and McDonald, (A.J.), 1961.The geochemistry of some natural acid glasses from the North Atlantic Tertiary volcanic province. Geochimica Acta, vol. 25, p. 189.Google Scholar
Carter, (P. T.) and Ibramm, (M.), 1952.The ternary system Na∼O-FeO-SiO2 Journ. Soc. Glass Techn., vol. 36, p. 142.Google Scholar
Chayes, (F.), 1960.Occurrence of normative sodium metasilicate in Washington's Tables. Bull. Geol. Soc. Amer., vol. 71, p. 503 [M.A. 15–52].Google Scholar
Cross, (W.), 1904. U.S. Geol. Surv. Bull. No. 228.Google Scholar
Fleischer, (M.), 1936.The formula of aenigmatite. Amer. Journ. Sci., ser. 5, vol. 32, p. 343 [M.A. 6–534].Google Scholar
[Foerstner, (E.)] Förstner, (H.), 1881.Nota preliminare sulla geologia dell'isola di Pantelleria secondo gli studii fatti negli anni 1874 e 1881. Boll. R. Com. Geol. Italia, vol. 12, p. 523.Google Scholar
[Foerstner, (E.)] 1884. Ueber die Feldsp∼tthe von Pantelleria. Zeits. Kryst.Min., vol. 8, p. 125.Google Scholar
Hess, (H.H.), 1949.Chemical composition and optical properties of common clinopyroxenes, part I. Amer. Min., vol. 34, p. 621 [M.A. 11–15].Google Scholar
Hytsnen, (K.), 1959.On the petrology and mineralogy of some alkaline volcanic rocks of Toror hills, Mr. Moroto, and Moru]inga in Karamoja, northeastern Uganda. Bull. Comm. Géol. Finlande, vol. 31, p. 75 [M.A. 14–421].Google Scholar
Jacobson, (R. R. E.), Maclrod, (W.N.), and Black, (R.), 1958. Ring complexes in the younger granite province of northern Nigeria. Mere. Geol. Soc. London, No. 1.Google Scholar
Jensen, (H.I.), 1906.GeolOgy of the volcanic area of the East Moreton and Wide Bay districts (Queensland). Proe. Linn. Soe. New South Wales, vol. 31, p. 73.Google Scholar
Johnson, (A.), 1912. Die Gesteine der Inseln S. Pietro und S. Antioco (Sardinien). Abh. Preuss. Akad. Wiss., Phys.-math. Kl., Abh. 2.Google Scholar
Koch, (P.), 1955.Les Pantellerites du Mont Mba Nsché (Cameroun). Compt. Rend. Acad. Sci. Paris, vol. 241, p. 893 [M.A. 14–68].Google Scholar
Lacroix, (A.), 1923.Minéralogie de Madagascar, vol. 3.Google Scholar
Lacroix, (A.), 1927.Les Rhyolites et les trachytes hyperalcalins quartziféres, á propos de ceux de la Corée. Compt. Rend. Acad. Sci. Paris, vol. 185, p. 1410.Google Scholar
Lacroix, (A.), 1930.Les Roches hyperalcalines du massif du Fantale et du col de Balla (Abyssinie). Mém. Géol. Soc. :France, vol. 6, p. 89.Google Scholar
Lacroix, (A.), 1934.Volcanisme et lithologie. Mission auTibetsi (1930–1931) dirig∼e parM. Dalloni. Mém. Acad. Sci. Paris, vol. 61, p. 169 [M.A. 6–123].Google Scholar
Larsen, (E.S.), IrVInG, (J.), Gonyer, (F.A.), and Larsen (E. S. 3rd), 1938.Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. Amer. Min., vol. 23, pp. 227 and 417 [M.A. 7–178].Google Scholar
Larsen, (E.S.), and Cross, (W.), 1956. Geology and petrology of the San Juan region, Southwestern Colorado. U.S. Geol. Surv. Prof. Paper 258.CrossRefGoogle Scholar
Marshall, (P.), 1936.Geology of Mayor Island. Trans. Roy. Soc. New Zealand, vol. 66, p. 337 [M.A. 6–123].Google Scholar
Muan, (A.), 1955.Phase equilibria in the system FeO-Fe2Os-SiO2. Trans. Amer. Inst. Mining Metal. Eng., vol. 203, p. 965.Google Scholar
Muir, (I.D.), 1951.The clinopyroxenes of the Skaergaard intrusion, eastern Greenland. Min. Mag., vol. 29, p. 690.Google Scholar
Muir, (I.D.), 1954.Crystallisation of pyroxenes in an iron-rich diabase from Minnesota. Ibid., vol. 30, p. 376.Google Scholar
Murray, (R.J.), 1954.The clinopyroxenes of the Garbh Eilean sill, Shiant Isles. Geol. Mag., vol. 91, p. 17 [M.A. 12–418].Google Scholar
Nemoto, (T.), 1934.Preliminary note on alkaline rhyolites from Tokati, Hokkaido. Journ. :Fae. Sci. Hokkaido Univ., ser. 4, vol. 2, p. 300 [M.A. 6–120].Google Scholar
Sabine, (P.A.), 1960. The geology of Rockall, North Atlantic. Bull. Geol. Surv. Gt. Btn., No. 16, p. 156 [M.A. 14–507].Google Scholar
Schairer, (J.F.), Yoder, (H.S.), and Keene, (A.G.), 1954. Ann. Rept. Geophysical Lab., Yearbook No. 53, p. 126.Google Scholar
Sørensen, (H.), 1960. On the agpaitic rocks. Rept. 21st Internat. Geol. Congr., part 13, p. 319 [M.A. 15–52].Google Scholar
Tilley, (C.E.), 1949.An alkali facies of granite at granite-dolomite contacts in Skye. Geol. Mag., vol. 86, p. 81 [M.A. 11–395].Google Scholar
Tilley, (C.E.), 1950. Some aspects of magmatic evolution. Quart. Journ. Geol. Soc., vol 106, p. 37 [M.A. 11–394].CrossRefGoogle Scholar
Tilley, (C.E.), 1958.Problems of alkali rock genesis. Ibid., vol. 113, p. 323 [M.A. 14–219].Google Scholar
Tomita, (T.), 1935.On the chemical compositions of the Cenozoic alkaline suite of the circum-Japan Sea region. Journ. Shanghai Sci. Inst., Sect. 2, vol. 1, p. 227 [M.A. 6–299].Google Scholar
Tuttle, (O.F.), 1960.Occurrence of normative sodium metasilicate in Washington's tables: A reply. Bull. Geol. Soc. Amer., vol. 71, p. 505 [M.A. 15–52J.Google Scholar
Tuttle, (O.F.), and Bowen, (N.L.), 1958. Origin of granite in the light of experimental studies. Mem. Geol. Soc. Amer. no. 74 [M.A. 15–62].Google Scholar
Ussing, (N. V.), 1912.Geology of the country around Julianehaab, Greenland. Medd. Grønland, vol. 38, p. 1.Google Scholar
Vincent, (E.A.), Wright, (J.B.), Chevallier, (R.), and Mathieu, (S.), 1957.Heating experiments on some natural titaniferous magnetites. Min. Mag., vol. 31, p. 624..Google Scholar
Washington, (H.S.), 1913. 1914. The volcanoes and rocks of Pantelleria. Journ. Geol. Chicago, vol. 21, pp. 653 and 683 and vol. 22, p. 1.Google Scholar
Wilkinson, (J.G.), 1957.The clinopyroxenes of a differentiated tesehenite sill near Gunnedah, New South Wales. Geol. Mag., vol. 94, p. 123 [M.A. 14–206].Google Scholar
Yagi, (K.), 1951.Petrochemical studies on the alkalic rocks of the Morotu district, Sakhalin. Bull. Geol. Soc. Amer., vol. 64, p. 769 [M.A. 12–268].Google Scholar
Yagi, (K.), 1958.Synthetic pyroxenes of the acmite-diopside system. Journ. Min. Soc. Japan, vol. 3, p. 763 [M.A. 14–351].Google Scholar
Zies, (E.G.), 1960.Chemical analyses of two pantellerites. Journ. Petrology, vol. 1, p. 304.Google Scholar