Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T10:50:12.476Z Has data issue: false hasContentIssue false

Plagioclase twins in some mafic gneisses from Broken Hill, Australia

Published online by Cambridge University Press:  14 March 2018

R. H. Vernon*
Affiliation:
Department of Geology and Geophysics, University of Sydney, Australia

Summary

Plagioclase in mafic gneisses from Broken Hill, Australia, contains twins that can be divided into two groups on the basis of shape: firstly, lamellar twins that gradually change thickness across a grain or form lenticular terminations; and secondly, simple and lamellar twins that show angular steps in the twin interface or form abrupt, planar terminations. The former are interpreted as mechanical twins, and the latter as growth twins formed by grain growth in the solid state, arguing largely by analogy with twin shapes in experimentally produced aggregates, particularly metals. The only twin laws observed in lenticular twins are albite and pericline, these being of nearly equal abundance. Stepped twins are much less common than lenticular twins, and in rocks without lenticular twins most of the plagioclase is untwinned. Several twin laws occur among the stepped twins, but the albite law is the most common. Simple twins on the albite and albite-carlsbad laws are prominent.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, (J. F.), 1941. Amer. Min., vol. 26, p. 247.Google Scholar
Binns, (R. A.), 1962. Ph.D. thesis, Cambridge.Google Scholar
Bolling, (G. F.) and Winegard, (W. C.), 1958. Journ. Inst. Metals, vol. 86, p. 492.Google Scholar
Borg, (I.), Handin, (J.), and Higgs, (D. V.), 1959. Journ. Geophys. Res., vol. 64, p. 1094.Google Scholar
Browne, (W. R.), 1922. Mem. Geol. Surv. New South Wales, no. 8, p. 295.Google Scholar
Buerger, (M. J.), 1945. Amer. Min., vol. 30, p. 469.Google Scholar
Buerger, (M. J.) 1960. Cursillos y Conferencias del Instituto 'Lucas Mallada', fasc. 7, p. 5.Google Scholar
Buerger, (M. J.), and Washken, (E.), 1947. Amer. Min., vol. 32, p. 296.Google Scholar
Burke, (J. E.), 1950. Trans. Amer. Inst. Min. Met. Eng., vol. 188, p. 1324.Google Scholar
Burri, (C.), 1962. Norsk Geol. Tidsskr., vol. 42, p. 193.Google Scholar
Cahn, (R. W.), 1953. Acta Metallurgica, vol. 1, p. 49.CrossRefGoogle Scholar
Cahn, (R. W.), 1954. Advances in Physics, vol. 3, p. 363.CrossRefGoogle Scholar
Carter, (N. L.), Christie, (J. M.), and Griggs, (D. T.), 1964. Journ. Geol., Chicago, vol. 72, p. 687.CrossRefGoogle Scholar
Deer, (W. A.), Howie, (R.), and Zussmann, (J.), 1963. Rock-forming Minerals, vol. 4, Longmans, London.Google Scholar
Donnay, (J. H. D.), 1940. Amer. Min., vol. 25, p. 578.Google Scholar
Donnay, (J. H. D.), 1961. Encyclopaedia Britannica, vol. 6, p. 810K.Google Scholar
Edwards, (A. B.), 1958. Journ. Geol. Soc. Australia, vol. 5, p. 1.CrossRefGoogle Scholar
Franke, (A. B.), 1920. Centr. Min., p. 254.Google Scholar
Fullman, (R. L.), 1951a. Journ. Appl. Physics, vol. 22, p. 448.Google Scholar
Fullman, (R. L.), 1951b. Ibid., p. 456.CrossRefGoogle Scholar
Fullman, (R. L.), and Fisher, (J. C.), 1951. Ibid., p. 1350.CrossRefGoogle Scholar
Gay, (P.), 1956. Min. Mag., vol. 31, p. 301.Google Scholar
Griggs, (D. T.), Paterson, (M. S.), Heard, (H. C.), and Turner, (F. J.), 1960. Mem. Geol. Soc. Amer., no. 79, p. 21.CrossRefGoogle Scholar
Hall, (E. O.), 1954. Twinning and Diffusionloss Transformations in Metals. Butterworths, London.Google Scholar
Harker, (D.) and Parker, (E. R.), 1945. Trans. Amer. Soc. Metals, vol. 34, p. 156.Google Scholar
Jillson, (D. C.), 1950. Trans. Amer. Inst. Min. Met. Eng., vol. 188, p. 1009.Google Scholar
Kingery, (W. D.), 1960. Introduction to Ceramics. Wiley, New York.Google Scholar
Mathewson, (C. H.), 1928. Trans. Amer. Inst. Min. Met. Eng., vol. 76, p. 554.Google Scholar
Miers, (H.), 1902. Mineralogy. Macmillan, London.Google Scholar
Mügge, (O.) and Heide, (F.), 1931. Neues Jahrb. Min., Abt. A, Beil.-Bd. 64, p. 161.Google Scholar
Naumann, (C. F.) and Zirkel, (F.), 1898. Elemente der Mineralogie. Engelmann, Leipzig.Google Scholar
Pabst, (A.), 1955. Bull. Geol. Soc. Amer., vol. 66, p. 897.CrossRefGoogle Scholar
Pratt, (P. L.), 1953. Acta Metallurgica, vol. 1, p. 692.CrossRefGoogle Scholar
Seifert, (K. E.), 1964. Amer. Min., vol. 49, p. 297.Google Scholar
Smith, (C. S.), 1948. Trans. Amer. Inst. Min. Met. Eng., vol. 175, p. 15.Google Scholar
Smith, (C. S.), 1954. Scientific American, vol. 190, p. 58.CrossRefGoogle Scholar
Stahton, (R. L.), 1964. Nature, vol. 202, p. 173.CrossRefGoogle Scholar
Stillwell, (F. L.), 1922. Mem. Geol. Survey New South Wales, no. 8, p. 354.Google Scholar
Tobi, (A. C.), 1962. Norsk Geol. Tidsskr., vol. 42, p. 264.Google Scholar
Turner, (F. J.), 1947. Amer. Min., vol. 32, p. 389.Google Scholar
Turner, (F. J.), 1951. Ibid., vol. 36, p. 581.Google Scholar
Turner, (F. J.), Griggs, (D. T.), and Heard, (H.), 1954. Bull. Geol. Soc. Amer., vol. 65, p. 883.CrossRefGoogle Scholar
Vance, (J. A.), 1961. Amer. Min., vol. 46, p. 1097.Google Scholar