Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T12:23:36.176Z Has data issue: false hasContentIssue false

The structures of the plagioclase felspars: VI. Natural intermediate plagioclases1

Published online by Cambridge University Press:  14 March 2018

P. Gay*
Affiliation:
Department of Mineralogy and Petrology, Cambridge

Summary

Specimens from some forty different localities over the composition range from about 20 % An to about 70 % An have been examined by X-ray single-crystal methods. The majority of these specimens show the normal intermediate plagioclase pattern characterized by weak pairs of subsidiary layer-lines of variable separation. It has been found that the separation of these layer-lines is a linear function of composition over the whole composition range. Further, this range is found to extend to more soda-rich compositions than was formerly believed, whilst the limits of the range are approximately defined by the compositions at which the separations of the subsidiary layer-lines about either the a- or the b-axes become zero.

The anomalous patterns shown by some specimens are discussed, and it is shown that most of these may be interpreted in terms of the previous geological history of the specimens.

A comparison of the present results with those obtained by previous workers in this field is made, and it is shown how the principal points of difference may be resolved. An account of the phase relationships of the low-temperature plagioclase series is given, and the problems arising from the present work are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barber, (C. T.), 1936. Effect of heat on the optical orientation of plagioclase felspars. Min. Mag., vol. 24, p. 343.Google Scholar
2. Buerger, (M. J.), 1942. X-ray crystallography, New York, p. 226.Google Scholar
3. Chao, (S. H.) and Taylor, (W. H.), 1940. Isomorphous replacement and super- lattice structures in the plagioclase felspars. Proc. Roy Soc., ser. A, vol. 176, p. 76 [M.A. 8 .13].Google Scholar
4. Chayes, (F.), 1952. Relations bctween composition and indices of refraction in natural plagioclases. Amer. Journ. Sci., Bowen volume, p. 85 [M.A. 12-134].Google Scholar
5. Cole, (W. F.), Sörum, (H.), and Taylor, (W. H.), 1951. The structures of the plagioclase felspars. I. Acta Cryst., vol. 4, p. 20 [M.A. 11-427].Google Scholar
6. Emmons, (R. C.), 1953. Selected petrogenic relationships of plagioclascs. Mem. Geol. Soc. Amer., no. 52 [M.A. 12-136].Google Scholar
7. Ernst, (E.) and Nieland, (H.), 1934. Plagioklase von Linosa, ein Beitrag zur Anemousitfrage. Tschermaks Min. Petr. Mitt., vol. 46, p. 93 [M.A. 6-118].CrossRefGoogle Scholar
8. Gay, (P.), 1953. The structures of the plagioelase felspars. III. Min. Mag., vol. 30, p. 169.Google Scholar
9. Gay, (P.) and Taylor, (W. H.). 1953. The structures of the plagioelase felspars. IV. Aeta Cryst., vol. 6, p. 647 [M.A. 12.33].Google Scholar
10. Gay, (P.) and Smith, (J. V.), 1955. Phase relations in the plagioclmse felspars: composition range Ano to An70 . Acta Cryst., vol. 8, p. 64.Google Scholar
11. Grout, (F. F.) and Schwartz, (G. M.), 1939. The geology of the anorthositcs of the Minnesota coast of Lake Superior. Bull. Minnesota Geol. Surv., no. 28 [M.A. 8 242 ].Google Scholar
12. Hutchinson, (A.) and Smith (W. Campbell), 1912. On sericite from North Wales and on penninitc and labradorite from Ireland. Min. slag., vol. 16, p. 267.Google Scholar
13. Kaaden, (J. Van Der), 1951. Optical studies on natural plagioclase feldspars with high- and low-temperature-optics. Diss.. Univ. of Utrecht [M.A. 11-282].Google Scholar
14. Köhler, (A.), 1941, Die Abhängigkeit der Plagioklasoptik vom vorangegangenen Wärmeverhalten. Tschermaks Min. Petr. Mitt., vol. 53, p. 24 [M.A. 8-313].Google Scholar
15. Kracek, (F. C.) and Neuvonen, (K. J.), 1952. Thermochemistry of plagioclase and alkali feldspars. Amer. Journ. Sci., Bowen volume, p. 293 [M.A. 12-134]Google Scholar
16. Laves, (F.), 1954. The coexistence of two plagioclases in the oligoclase compositional range. Journ. Geol., Chicago, vol. 62, p. 409 [M.A. 12 527].CrossRefGoogle Scholar
17. Laves, (F.) and Goldsmith, (J. R.), 1951. A.C.A. meeting, Chicago, October (abstract).Google Scholar
18. Laves, (F.) and Goldsmith, (J. R.), 1954. Long-range-short-range order in calcic plagioclases as a continuous and reversible function of temperature. Acta Cryst., vol. 7, p. 465 [M.A. 12 418].Google Scholar
19. Muir, (I. D.), 1955. Transitional optics of sonic andesines and labradorites. Min. Mag., vol. 30, p. 545.Google Scholar
20. Poldervaart, (A.), 1944. The petrology of the Elephant’s Head dike and the New Amalfi sheet (Matatiele). Trans. Roy. Soe. South Africa, vol. 30, p. 85.CrossRefGoogle Scholar
21. Rogers, (A. F.) and Kerr, (P. F.), 1942. Optical Mineralogy, New York, p. 240.Google Scholar
22. Smith, (J. V.), 1956. The powder patterns and lattice parametem of plagioclase felspars. I. Min. Mag., vol. 31, p. 47.Google Scholar
23. Sörum, (H.), 1951. Studies on the structures of plagioclasc felspars. Kgl. Norske Vidcnsk. Selskab. Skrifter, no. 3.Google Scholar
24. Taylor, (W. H.), Darbyshire, (J. A.), and Strunz, (H.), 1934. An X-ray investigation of the felspars. Zeits. Krist., vol. 87, p. 464 [M.A. 6-177].Google Scholar
25. Wager, (L. R.) and Deer, (W. A.), 1939. Geological investigations in east Greenland. Part III. Medd. om (Gronhmd, vol. 106, no. 4, p. 31 [M.A. 8 27].Google Scholar
26. Wager, (L. R.) and Mitchell, (R. L.), 1951. The distribution of trace elements during strong fractionation of basic magma .... Geochim. Acta, vol. 1, p. 131 [M.A . 11-495].CrossRefGoogle Scholar