Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T11:19:31.868Z Has data issue: false hasContentIssue false

The thermal decomposition of crocidolite from Koegas, South Africa

Published online by Cambridge University Press:  14 March 2018

A. A. Hodgson
Affiliation:
Cape Asbestos Fibres Ltd., Fibre Laboratory, Barking, Essex
A. G. Freeman
Affiliation:
Cape Asbestos Fibres Ltd., Fibre Laboratory, Barking, Essex
H. F. W. Taylor
Affiliation:
Cape Asbestos Fibres Ltd., Fibre Laboratory, Barking, Essex

Summary

When crocidolite (fibrous riebeckite, Na2Fe3+2Fe2+2·6Mg0·4Si8O22(OH)2 approx.) is heated in argon or nitrogen at 50–400°C, uncombined water is lost. The tensile strength drops sharply at 300–400°C. At 500–600°C under static, or 570–700°C under dynamic conditions, an endothermic dehydroxylation yields an anhydride with a structure close to that of the initial material. At about 800°C, the anhydride decomposes endothermically, giving acmite, cristobalite, a spinel, and liquid. At 950–1000°C the acmite decomposes. Melting is extensive by 1050°C.

On heating crocidolite in oxygen or air, uncombined water is again lost below 400°C. At 300–450°C (static), or 400–600°C (dynamic), hydrogen ions and electrons are lost, to give an oxyamphibole, Na2Fe3+4Fe2+0·6Mg0·4Si8O24. The process is exothermic and probably occurs by proton and electron migration, as suggested by Addison et al. (1962). At 600–950°C the oxyamphibole decomposes endothermically, and most of the remaining Fe2+ is oxidized, giving acmite, hematite, cristobalite, and a spinel. The spinel has largely disappeared by about 950°C, while at 975–1000°C the acmite also decomposes and melting begins.

When crocidolite is heated in hydrogen, no change is detectable by X-rays below 530°C, when the amphibole decomposes to give mainly a pyroxene, metallic iron, cristobalite, and liquid. The same products are detectable up to at least 850°C; the proportion of metallic iron increases with temperature.

With the exception of metallic iron, all the crystalline products formed, whether under neutral, oxidizing, or reducing conditions, show varying degrees of preferred orientation. This could be explained if the reactions occur mainly by the migration of cations through relatively undisturbed oxygen frameworks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addison, (C. C.), Addison, (W. E.), Neal, (G. H.), and Sharp, (J. H.), 1962. Journ. Chem. Soc. (London), p. 1468.Google Scholar
Addison, (W. E.), Neal, (G. H.), and Searp, (J. H.), 1962. Ibid., p. 1472.CrossRefGoogle Scholar
Addison, (W. E.) and Sharp, (J. H.), 1962. Ibid., p. 3693.CrossRefGoogle Scholar
Ball, (M. C.) and Taylor, (H. F. W.), 1961. Min. Mag., vol. 32, p. 754.Google Scholar
Ball, (M. C.) and Taylor, (H. F. W.), 1963. Ibid., vol. 33, p. 467.Google Scholar
Barnes, (V. E.), 1930. Amer. Min., vol. 15, p. 393.Google Scholar
Basta, (E. Z.), 1957. Min. Mag., vol. 31, p. 431.Google Scholar
Borley, (G. D.), 1963. Ibid., vol. 33, p. 358.Google Scholar
Bowen, (N. L.) and Schairer, (J. F.), 1929. Amer. Journ. Sci., ser. 5, vol. 18, p. 365.CrossRefGoogle Scholar
Bown, (M. G.) and Gay, (P.), 1959. Amer. Min., vol. 44, p. 592.Google Scholar
Brindley, (G. W.) and Youell, (R. F.), 1953. Min. Mag., vol. 30, p. 57.Google Scholar
Brindley, (G. W.) and Zussman, (J.), 1957. Amer. Min., vol. 42, p. 461.Google Scholar
Brown, (G. M.), 1960. 1bid., vol. 45, p. 15.Google Scholar
Carter, (P. T.) and Ibrahim, (M.), 1952. Journ. Soc. Glass Technol., vol. 36, p. 142.Google Scholar
Cilliers, (J. J. Le R.), Freeman, (A. G.), Hodgson, (A.), and Taylor, (H. F. W.), 1961. Econ. Geol., vol. 56, p. 1421.CrossRefGoogle Scholar
Ernst, (W. G.), 1957. Ann. Rept. Geophys. Lab., Carnegie Inst. Washington Year Book 56, p. 228; 1958, ibid., 57, p. 199; 1959, ibid., 58, p. 121.Google Scholar
Freeman, (A. G.)and Taylor, (H. F. W.), 1960. Silikattechnik, vol. 11, p. 390.Google Scholar
Gay, (P.) and Lemaitre, (R. W.), 1961. Amer. Min., vol. 46, p. 92.Google Scholar
Greig, (J. W.), 1932. Journ. Amer. Chem. Soc., vol. 54, p. 2846.CrossRefGoogle Scholar
Heystek, (H.) and Schmidt, (E. R.), 1953. Trans. Geol. Soe. South Africa, vol. 56, p. 149.Google Scholar
Hodgson, (A. A.), 1963a. Journ. Sei. Instrum., vol. 40, p. 61.Google Scholar
Hodgson, (A. A.), 1963b. Ph.D. thesis, London.Google Scholar
[Ivanova, (V. P.).] . (Mem. All-Union Min. Soc.), vol. 90, p. 50.Google Scholar
Lyon, (R. J. P.), 1962. Evaluation of infrared spectroscopy for compositional analysis of lunar and planetary soils. Stanford Research Institute, California.Google Scholar
Mitchell, (B. D.) and Mackenzie, (R. C.), 1959. Clay Min. Bull., vol. 4, p. 31.CrossRefGoogle Scholar
Moenke, (H.), 1962. Miueralspektren. Akadcmie-Verlag, Berlin.Google Scholar
Nolan, (J.) and Edgar, (A. D.), 1963. Min. Mag., vol. 33, p. 625.Google Scholar
Russell, (J. D.), 1964. Private communication.Google Scholar
Taylor, (H. F. W.), 1962. Clay Min. Bull., vol. 5, p. 45.CrossRefGoogle Scholar
Vermaas, (F. H. S.), 1952. Trans. Geol. Soc. South Africa, vol. 55, p. 199.Google Scholar
Whittaker, (E. J. W.), 1961. Acta Cryst., vol. 13, p. 291.CrossRefGoogle Scholar