Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T11:26:04.413Z Has data issue: false hasContentIssue false

The thermal reactions of nacrite and the formation of metakaolin, γ-alumina, and mullite1

Published online by Cambridge University Press:  14 March 2018

G. W. Brindley
Affiliation:
College of Mineral Industries, Pennsylvania State University
K. Hunter
Affiliation:
Physics Department, University of Leeds

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © 1955, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, (W.F.) and Grim (g. E.), 1951. High temperature thermal effects of clay and related materials. Amer. Nin., vol. 36, lop. 182.01. [M.A. 11345.]Google Scholar
Brindley, (G.W.) and Youell, (R.F.), 1951.A chemical determination of ‘tetrahedral' and ‘octahedral’ aluminium ions in a silicate. Acta Cryst., vol. 4, pp. 495496. Google Scholar
Brindley, (G.W.) and Ogilvie, (G.J.), 1952. The texture of single crystals of brucite. Acta Cryst., vol. 5, pp. 412413. [M.A.12-208.]CrossRefGoogle Scholar
Colegrave, (E.B.) and Rigy, (G.R.), 1952. The decomposition of kaolinite by heat. Trans. Brit. Ceram. Soc., vol. 51, pp. 355367. Google Scholar
Comeforo, (J.E.), Fischer, (R.B.), and Bradley, (W.F.), 1948. Mullitization of kaolinite. Journ. Amer. Ceram. Soc., vol. 31, pp. 254–59. [M.A. 11-452.]Google Scholar
ElTel, (W.), 1954. The physical chemistry of the silicates. Univ. of Chicago Press. [M.A. 12-403.]Google Scholar
ElTel, (W.), and Kedesdy, (H.), 1944. Elektronen-Mikroskopie and -Beugung silikatischer Metaphasen. Vierte Mitt. Der Metakaolin. Abhand. PreuB. Akad. Wiss., Math..Nat. KI., Nr. 5, pp. 3745. Google Scholar
Ervin, (G.), 1952. Structural interpretation of the diaspore-corundum and boehmite—y-A120a transitions. Acta Cryst., vol. 5, pp. 103–10.Google Scholar
Glass, (H.D.), 1954. High-temperature phases from kaolinite and halloysite. Amer. Min., vol. 39, pp. 193207. [M.A. 12-491.]Google Scholar
Insley, (H.) and Ewell, (R. H.), 1935. Thermal behaviour of the kaolin minerals. Journ. Res. Nat. Bur. Standards, U.S.A., vol. 14, pp. 615627. Google Scholar
Johns, (W.D.), 1953. High-temperature phase changes in kaolinites. Min. Mag., vol. 30, pp. 186198. Google Scholar
Knorning, (O.yon), Briadley, (G.W.), and Hrj∼Wen, (K.), 1952. Nacrite from Hirvivaara, northern Karelia, Finland. Min. Mug., vol. 28, pp. 963972. Google Scholar
Richandsozq, (H.M.), 1951. Phase changes which occur on heating kaolin clays. Ch. 3, ‘X-ray identification and crystal structures of clay minerals'. Mineralogical Society, London. [M.A.ll-253.]Google Scholar
Richandsozq, (H.M.), and Wilde, (F.G.), 1952. An X-ray study of the crystalline phases that occur in fired clays. Trans. Brit. Ceram. Soe., vol. 51, pp. 387400. Google Scholar
Rooksby, (H.P.), 1951. Oxides and hydroxides of alumininm and iron. Ch. X, 'X-ray identification and crystal structures of clay minerals'. Mineralogical Society, London. [M.A. 11-253.]Google Scholar
Roy, (R.), Roy, (D.M.), and Fnancis, (E.E.), 1954. New data on the thermal decomposition of kaolinite and halloysite. Paper presented at the 56th Annual Meeting, American Ceramic Society, Chicago.Google Scholar
Syndics, (N.), and Byström, (A.M.), 1953. Decomposition products of muscovite at temperatures between 1000°C and 1200°C. Trans. Brit. Ceram. Soc., vol. 52, pp. 632642. Google Scholar
Tscheischwili, (L.), BüSsem, (W.), and Weyl (W), 1939. Über den Metakaolin. Ber. Deut. Keram. Gesell., vol. 20, pp. 249276. Google Scholar