Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T11:31:37.514Z Has data issue: false hasContentIssue false

Transitional optics of some andesines and labradorites

Published online by Cambridge University Press:  14 March 2018

I. D. Muir*
Affiliation:
Department of Mineralogy and Petrology, University of Cambridge

Extract

Recent optical and structural investigations have shown that ; oth high- and low-temperature forms of plagioclase can exist naturally over the range An0-70, and in the more basic plagioclases (An70_90) Gay (1954) has shown that a structural distinction can be effected although no definite optical differences have yet been established. In the anorthite range slight optical and distinct structural differences have been observed between synthetic plagioelases and crystal lapilli on the one hand and all other natural plagioclases on the other (Gay, 1953).

Type
Research Article
Copyright
Copyright © 1955, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, (C.T.), 1936. The Tertiary igneous rocks of the Pakokku district and the Salingyi township of the Lower Cbindwin district, Burma, with special reference to the determination of the felspars by the Fedoroff method. Mem. Geol. Surv. India, vol. 68, pp. 121–92. [M.A. 7-21.]Google Scholar
Barber, (C.T.), 1936b. The effects of heat on the optical orientation of plagioelase felspars. Min. Mag., vol. 24, pp. 343352. Google Scholar
Becke, (F.), 1921. Die optischen Eigenschaften einiger Andesine. Tschermaks Min. Petr. Mitt., vol. 35, pp. 3146. [M.A. 2-61.]CrossRefGoogle Scholar
Buerger, (M.J.), 1948. The rô1e of temperature in mineralogy. Amer. Min., vol. 33, pp. 101121. [M.A. 10-380.]Google Scholar
Chayes, (F.), 1952. Relations between composition and indices of refraction in natural plagioclase. Amer. Journ. Sci., Bowen vol., pp. 85105. IM.A. 12-134.]Google Scholar
Chudoba, (K.) and Enoels, (A.), 1937. Der Einfluβ der Kalifeldspatkomponente auf die Optik der P]agioelase. Zbl. Min. Abt. A., 103116. [M.A. 7-21.]Google Scholar
Cole, (W.F.), Sorum (H.), and Taylor, (W.H.), 1951. The structures of the plagioclase felspars. I. Acta Cryst., vol. 4, pp. 2029. [M.A. 11-427.]Google Scholar
Ernst, (E.) and Nieland, (H.), 1934. Plagioklase yon Linosa, ein Beitrag zur Anemousitfrage. Tschermaks Min. Petr. Mitt., vol. 46, pp. 93126. [M.A. 6-118.]Google Scholar
Gay, (P.), 1953. The structures of the plagioclase felspars: III. An X-ray study of anorthites and bytownites. Min. Mag., vol. 30, pp. 169177. Google Scholar
Gay, (P.), 1954.The structures of the plagioclase felspars. V. The heat-treatment of lime-rich plagioelases. Min. Mag., vol. 30, pp. 428438. Google Scholar
Gay, (P.), and Taylor (I, W.-I.), 1953. The structures of the plagioclase felspars. IV. Variations in the anorthite structures. Acta Cryst., vol. 6, pp. 647650. [M.A. 12-333.]Google Scholar
Grout, (F.F.) and Schwartz, (G.M.), 1939. The geology of the anorthosites of the Minnesota coast of Lake Superior. Bull. Minnesota Geol. Surv., no. 28. [M.A. 8-242.]Google Scholar
(G.vander), Kaaden, 1951. Optical studies on natural plagioclase feldspars with high- and low-temperature optics. Diss. Univ. Utrecht. [M.A. 11-282.]Google Scholar
KöHler, (A.), 1941. Die Abhängigheit der Plagioklasoptik vom vorangegangenen W∼rmeverhMten. Tsehermaks Min. Petr. Mitt., vol. 53, pp. 2449. [M.A. 8-313.]Google Scholar
Laves, (F.), 1952. Phase relations in the alkali feldspars. Journ. Geol., vol. 60, pp. 436450.and pp. 549574. [M.A. 12-136.]Google Scholar
Müir, (I.D.), 1951. The clinopyroxenes of the Skaergaard intrusion, eastern Greenland. Min. Mag., vol. 29, pp. 690714. Google Scholar
Müir, (I.D.), 1954. Crystallization of pyroxenes in an iron-rich diabase fl-om Minnesota. Min. Mag., vol. 30, pp. 376388. Google Scholar
Oftedahl, (C.), 1948. Studies on the igneous rock complex of the Oslo region. IX. The feldspars. Skrifter Norske Viden. Akad., Oslo, Math.-Nat. KI., no. 3, pp. 171. [M.A. 11-11.]Google Scholar
Poldervaart, (A.), 1944. The petrology of the Elephants’ Head dike and the :New Amalfi sheet (Matatiele). Trans. Roy. Soc. South Africa, vol. 30, pp. 85119. Google Scholar
Reinhard, (M.), 1931. Universal Drehtisehmethoden. Basel. [M.A. 4-435.]Google Scholar
Scholler, (H.), 1941. Versuche zur Temperaturabhängigkeit der Plagioklasoptik. Tsehermaks Min. Petr. Mitt., vol. 53, pp. 180221. [M.A. 8-313.]Google Scholar
Tertsch, (H.), 1942. Zur I-Iochtemperaturoptik basischer Plagioklase. Tschermaks Min. Petr. Mitt., vol. 54, pp. 193217. [M.A. 9-270.]Google Scholar
Tuttle, (O.E.) and Bowen, (N.L.), 1950. High-temperature albite and contiguous feldspars. Journ. Geol., vol. 58, pp. 572483. [M.ll, A.-327.]Google Scholar
Tuttle, (O.E.) and Keith, (M.L.), 1954. The granite problem: evidence from the quartz and feldspar of a Tertiary granite. Geol. Mag., vol. 91, pp. 6172. [M.A. 12-418.]Google Scholar
Wace, (L.R.) and Deer, (W.A.), 1939. Geological investigations in east Greenland. Part III. The petrology of the Skaergaard intrusion, Kangerdlugssuaq, east Greenland. Medd. om Grønland, vol. 106, no. 4, pp. 1352. [M.A. 8-27.]Google Scholar
Wasihngton, (H.S.) and Wright, (F.E.), 1910. A feldspar from Linosa and the existence of soda anorthite (earnegieite). Amer. Journ. Sci., Set. 4, vol. 29, pp. 5170. Google Scholar