Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T05:47:58.178Z Has data issue: false hasContentIssue false

Anhydrous alkali copper sulfates – a promising playground for new Cu2+ oxide complexes: new Rb-analogues of fumarolic minerals.

Published online by Cambridge University Press:  29 September 2021

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia Kola Science Center, Russian Academy of Sciences, Apatity, 184200, Murmansk Region, Russia;
Diana O. Nekrasova
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
Dmitry O. Charkin
Affiliation:
Department of Chemistry, Moscow State University, GSP-1, Moscow119991, Russia
Anatoly N. Zaitsev
Affiliation:
Department of Mineralogy, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Artem S. Borisov
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Marie Colmont
Affiliation:
Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
Olivier Mentré
Affiliation:
Université Lille, CNRS, Centrale Lille, Université Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
Darya V. Spiridonova
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
*
*Author for correspondence: Oleg I. Siidra, Email: o.siidra@spbu.ru

Abstract

We report the crystal structures of eight new synthetic multinary Rb–Cu sulfates representing four new structure types: δ-Rb2Cu(SO4)2, γ-RbNaCu(SO4)2, γ-RbKCu(SO4)2, Rb2Cu2(SO4)3, Rb2Cu2(SO4)3(H2O), β-Rb2Cu(SO4)Cl2, β-Rb4Cu4O2(SO4)4⋅(Cu0.83Rb0.17Cl) and Rb2Cu5O(SO4)5. The determination of their crystal structures significantly expands the family of anhydrous copper sulfates. Some of the anhydrous rubidium copper sulfates obtained turned out to be isostructural to known compounds and minerals. Rb2Cu5O(SO4)5 is isostructural to cesiodymite, CsKCu5O(SO4)5 and cryptochalcite, K2Cu5O(SO4)5. Rb2Cu2(SO4)3 also shows an example of crystallisation in the already known structure type first observed for synthetic K2Cu2(SO4)3. ‘Hydrolangbeinite’, Rb2Cu2(SO4)3(H2O), was formed as a result of a minor hydration of the initial mixture of reagents.

The minerals and synthetic framework compounds of the A2Cu(SO4)2 series demonstrate a vivid example of morphotropism with the formation of structural types depending on the size of the cations residing in the cavities of the [Cu(SO4)2]2– open framework. To date, five types (α, β, γ, δ and ε) can be distinguished. We propose to call this series of compounds ‘saranchinaite-type’, as the stoichiometry A2Cu(SO4)2 was first encountered during the discovery and description of saranchinaite, Na2Cu(SO4)2.

The discovery of β-Rb2Cu(SO4)Cl2, a new monoclinic polymorph of chlorothionite, seems to be of particular interest considering the recently discovered interesting magnetic properties of synthetic K2Cu(SO4)X2 (X = Cl and Br) and Na2Cu(SO4)Cl2.

In these new structural architectures, a number of features have been revealed that were seldom observed previously. The first is the bidentate coordination of the sulfate tetrahedron via edge-sharing with the Cu2+-centred coordination polyhedron. Until recently, such coordination was known only for the chlorothionite structure. The second is formation of ‘high-coordinate’ CuO7 polyhedra. The structures of the new compounds suggest that such coordination is not in fact so uncommon, at least among anhydrous alkali copper sulfates. All of the described features clearly indicate the importance of further systematic studies of anhydrous copper-sulfate systems. Their exploration, particularly of the new copper-oxide substructures with new coordination environments, is highly likely to lead to new potentially interesting magnetic properties due to the unusual arrangements of magnetically active Cu2+ cations.

In addition to experimental details on the synthesis of rubidium analogues of anhydrous potassium and sodium sulfates, this work also provides an analysis and a brief review of the geochemistry of rubidium in volcanic environments.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Daniel Atencio

References

Bo, X., Wang, D., Wan, B. and Wan, X.G. (2020) Calculated magnetic exchange interactions in the quantum spin chain materials K2CuSO4Cl2 and K2CuSO4Br2. Physical Reviews, B101, 024416.CrossRefGoogle Scholar
Borisov, A.S., Siidra, O.I., Kovrugin, V.M., Golov, A.A., Depmeier, W., Nazarchuk, E.V. and Holzheid, A. (2021) Expanding the family of mineral-like anhydrous alkali copper sulfate framework structures: New phases, topological analysis and evaluation of ion migration potentialities. Journal of Applied Crystallography, 54, 237250.CrossRefGoogle Scholar
Bruker (2014) APEX2. Version 2014.11-0. Bruker-AXS, Madison, Wisconsin, USA.Google Scholar
Burns, P.C. and Hawthorne, F.C. (1995) Coordination geometry pathways in Cu2+ oxysalt minerals. The Canadian Mineralogist, 33, 889905.Google Scholar
Chaplygin, I.V., Taran, Y.A., Dubinina, E.O., Shapar, V.N. and Timofeeva, I.F. (2015) Chemical composition and metal capacity of magmatic gases of Gorelyi volcano, Kamchatka. Doklady Earth Sciences, 463, 690694.CrossRefGoogle Scholar
Chaplygin, I.V., Lavrushin, V.Y., Dubinina, E.O., Bychkova, Y.V., Inguaggiato, S. and Yudovskaya, M.A. (2016) Geochemistry of volcanic gas at the 2012–13 New Tolbachik eruption, Kamchatka. Journal of Volcanology and Geothermal Research, 323, 186193.CrossRefGoogle Scholar
Charkin, D.O., Markovski, M.R., Siidra, O.I., Nekrasova, D.O. and Grishaev, V.Yu. (2019) Influence of the alkali cation size on the Cu2+ coordination environments in (AX)[Cu(HSeO3)2] (A = Na, K, NH4, Rb, Cs; X = Cl, Br) layered copper hydrogen selenite halides. Zeitschrift für Kristallographie – Crystalline Materials, 234, 739747.CrossRefGoogle Scholar
Churikova, T., Dorendorf, F. and Wörner, G. (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. Journal of Petrology, 42, 15671593.CrossRefGoogle Scholar
Churikova, T.G., Gordeychik, B.N., Edwards, B.R., Ponomareva, V.V. and Zelenin, E.A. (2015a) The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption. Journal of Volcanology and Geothermal Research, 307, 321.CrossRefGoogle Scholar
Churikova, T.G., Gordeychik, B.N., Iwamori, H., Nakamura, H., Ishizuka, O., Nishizawa, T., Haraguchi, S., Miyazaki, T. and Vaglarov, B.S. (2015b) Petrological and geochemical evolution of the Tolbachik volcanic massif, Kamchatka, Russia. Journal of Volcanology and Geothermal Research, 307, 156181.CrossRefGoogle Scholar
Effenberger, H. and Zemann, J. (1984) The crystal structure of caratiite. Mineralogical Magazine, 48, 541546.CrossRefGoogle Scholar
Fujihala, M., Koorikawa, H., Mitsuda, S., Morita, K., Tohyama, T., Tomiyasu, K., Koda, A., Okabe, H., Itoh, S., Yokoo, T., Ibuka, S., Tadokoro, M., Itoh, M., Sagayama, H., Kumai, R. and Murakami, Y. (2017) Possible Tomonaga-Luttinger spin liquid state in the spin-1/2 inequilateral diamond-chain compound K3Cu3AlO2(SO4)4. Scientific Reports, 7, 16785.CrossRefGoogle Scholar
Fujihala, M., Sugimoto, T., Tohyama, T., Mitsuda, S., Mole, R.A., Yu, D.H., Yano, S., Inagaki, Y., Morodomi, H., Kawae, T., Sagayama, H., Kumai, R., Murakami, Y., Tomiyasu, K., Matsuo, A. and Kindo, K. (2018) Cluster-based haldane state in an edge-shared tetrahedral spin-cluster chain: fedotovite K2Cu3O(SO4)3. Physical Review Letters, 120, 077201.CrossRefGoogle Scholar
Fujihala, M., Mitsuda, S., Mole, R.A., Yu, D.H., Watanabe, I., Yano, S., Kuwai, T., Sagayama, H., Kouchi, T., Kamebuchi, H. and Tadokoro, M. (2020) Spin dynamics and magnetic ordering in the quasi-one-dimensional S=1/2 antiferromagnet Na2CuSO4Cl2. Physical Reviews, B101, 024410.CrossRefGoogle Scholar
Furrer, A., Podlesnyak, A., Pomjakushina, E. and Pomjakushin, V. (2018) Spin triplet ground-state in the copper hexamer compounds A 2Cu3O(SO4)3 (A = Na, K). Physical Reviews, B98, 180410.CrossRefGoogle Scholar
Gattow, G. and Zemann, J. (1958) Über Doppelsulfatsalze vom Typ A +2B 2+2(SO4)3. Zeitschrift für Anorganische und Allgemeine Chemie, 293, 233240.CrossRefGoogle Scholar
Giacovazzo, C. Scandale, E. and Scordari, F. (1976) The crystal structure of chlorothionite CuK2Cl2SO4. Zeitschrift für Kristallographie – Crystalline Materials, 144, 226237.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and Geochemical Society, Washington D.C.Google Scholar
Kahlenberg, V., Piotrowski, A. and Giester, G. (2000) Crystal structure of Na4[Cu4O2(SO4)4]⋅MeCl (Me: Na, Cu, □) – the synthetic Na-analogue of piypite (caratiite). Mineralogical Magazine, 64, 10991108.CrossRefGoogle Scholar
Kornyakov, I.V., Vladimirova, V.A., Siidra, O.I. and Krivovichev, S.V. (2021) Expanding the averievite family, (MX)Cu5O2(T 5+O4)2 (T 5+ = P, V; M = K, Rb, Cs, Cu; X = Cl, Br): synthesis and single-crystal X-ray diffraction study. Molecules, 26, 833.CrossRefGoogle Scholar
Kovrugin, V.M., Nekrasova, D.O., Siidra, O.I., Mentré, O., Masquelier, C., Stefanovich, S.Yu. and Colmont, M. (2019) Mineral-inspired crystal growth and physical properties of Na2Cu(SO4)2, and review of Na2M(SO4)2(H2O)x (x = 0–6) compounds. Crystal Growth and Design, 19, 12331244.CrossRefGoogle Scholar
Lander, L., Rousse, G., Batuk, D., Colin, C.V., Dalla Corte, D.A. and Tarascon, J.-M. (2017) Synthesis, structure, and electrochemical properties of K-based sulfates K2M 2(SO4)3 with M = Fe and Cu. Inorganic Chemistry, 56, 20132021.CrossRefGoogle Scholar
Marsh, R.E. (1995) Some thoughts on choosing the correct space group. Acta Crystallographica, B51, 897907.CrossRefGoogle Scholar
Masquelier, C. and Croguennec, L. (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chemical Reviews, 113, 65526591.CrossRefGoogle ScholarPubMed
Menyailov, I.A. and Nikitina, L.P. (1980) Chemistry and metal contents of magmatic gases: the new Tolbachik volcanoes case (Kamchatka). Bulletin Volcanologique, 43, 195205.CrossRefGoogle Scholar
Nekrasova, D.O., Tsirlin, A.A., Colmont, M., Siidra, O.I., Vezin, H. and Mentré, O. (2020) Magnetic hexamers interacting in layers in the (Na,K)2Cu3O(SO4)3 minerals. Physical Reviews, B102, 184405.CrossRefGoogle Scholar
Nekrasova, D.O., Siidra, O.I., Zaitsev, A.N., Ugolkov, V.L., Colmont, M., Charkin, D.O., Mentré, O., Chen, R., Kovrugin, V.M. and Borisov, A.S. (2021) A fumarole in a one-pot: synthesis, crystal structure and properties of Zn-and Mg-analogues of itelmenite and a synthetic analogue of glikinite. Physics and Chemistry of Minerals, 46, 6.CrossRefGoogle Scholar
Pautov, L.A., Mirakov, M.A., Siidra, O.I., Faiziev, A.R., Nazarchuk, Е.V., Karpenko, V.Yu. and Makhmadsharif, S. (2020) Falgarite, K4(VO)3(SO4)5, a new mineral from sublimates of a natural underground coal fire at the tract of Kukhi-Malik, Fan-Yagnob coal deposit, Tajikistan. Mineralogical Magazine, 84, 455462.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Chukanov, N.V., Lykova, I.S., Savelyev, D.P., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014) Wulffite, K3NaCu4O2(SO4)4, and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 52, 699716.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V. and Pushcharovsky, D.Y. (2018a) Copper minerals from volcanic exhalations – a unique family of natural compounds: crystal-chemical review. Acta Crystallographica, B74, 502518.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Pushcharovsky, D.Yu., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Britvin, S.N. (2018b) Cryptochalcite, K2Cu5O(SO4)5, and cesiodymite, CsKCu5O(SO4)5, two new isotypic minerals and the K-Cs isomorphism in this solid-solution series. European Journal of Mineralogy, 30, 593607.CrossRefGoogle Scholar
Popolitov, E.I. and Volynets, O.N. (1982) Geochemistry of quaternary volcanic rocks from the Kurile-Kamchatka island arc. Journal of Volcanology and Geothermal Research, 12, 299316.CrossRefGoogle Scholar
Portnyagin, M., Duggen, S., Hauff, F., Mironov, N., Bindeman, I., Thirlwall, M. and Hoernle, K. (2015) Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems. Journal of Volcanology and Geothermal Research, 307, 133155.CrossRefGoogle Scholar
Rousse, G. and Tarascon, J.-M. (2014) Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chemistry of Materials, 26, 394406.CrossRefGoogle Scholar
Scordari, F. and Stasi, F. (1990) The crystal structure of euchlorine, NaKCu3O(SO4)3, Locality: Vesuvius, Italy. Neues Jahrbuch für Mineralogie Abhandlungen, 161, 241253.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, B71, 38.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik Vulcano: puninite, Na2Cu3O(SO4)3 - a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Lukina, E.A., Zaitsev, A.N. and Shilovskikh, V.V. (2018a) Belousovite, KZn(SO4)Cl, a new sulphate mineral from the Tolbachik volcano with apophyllite sheet-topology. Mineralogical Magazine, 82, 10791088.CrossRefGoogle Scholar
Siidra, O.I., Kozin, M.S., Depmeier, W., Kayukov, R.A. and Kovrugin, V.M. (2018b) Copper – lead selenite bromides: A new large family of compounds partly having Cu2+ substructures derivable from Kagome-nets. Acta Crystallographica, B74, 712724.Google Scholar
Siidra, O.I., Lukina, E.A., Nazarchuk, E.V., Depmeier, W., Bubnova, R.S., Agakhanov, A.A., Avdontseva, E.Yu., Filatov, S.K. and Kovrugin, V.M. (2018c) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik Volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineralogical Magazine, 82, 257274.CrossRefGoogle Scholar
Siidra, O.I., Borisov, A.S., Lukina, E.A., Depmeier, W., Platonova, N.V., Colmont, M. and Nekrasova, D.O. (2019a) Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu3O(SO4)3. Physics and Chemistry of Minerals, 46, 403416.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A. and Polekhovsky, Yu.S. (2019b) Aleutite [Cu5O2](AsO4)(VO4)⋅(Cu0.50.5)Cl, a new complex salt-inclusion mineral with Cu2+ substructure derived from Kagome-net. Mineralogical Magazine, 83, 847853.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N. and Shilovskikh, V.V. (2020) Majzlanite, K2Na(ZnNa)Ca(SO4)4, a new anhydrous sulphate mineral with complex cation substitutions from Tolbachik volcano. Mineralogical Magazine, 84, 153158.CrossRefGoogle Scholar
Siidra, O.I., Borisov, A.S., Charkin, D.O., Depmeier, W. and Platonova, N.V. (2021a) Evolution of fumarolic anhydrous copper sulfate minerals during successive hydration/dehydration. Mineralogical Magazine, 85, 262277.CrossRefGoogle Scholar
Siidra, O.I., Charkin, D.O., Kovrugin, V.M. and Borisov, A.S. (2021b) K(Na,K)Na2[Cu2(SO4)4]: a new highly porous anhydrous sulfate and evaluation of possible ion migration pathways. Acta Crystallographica B. in press.CrossRefGoogle Scholar
Soldatov, T.A., Smirnov, A.I., Povarov, K.Yu., Hälg, M., Lorenz, W.E.A. and Zheludev, A. (2018) Spin gap in the quasi-one-dimensional S=½ antiferromagnet K2CuSO4Cl2. Physical Reviews, B98, 144440.CrossRefGoogle Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.CrossRefGoogle Scholar
Taran, Yu.A., Hedenquist, J.W., Korzhinsky, M.A., Tkachenko, S.I. and Shmulovich, K.I. (1995) Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochimica et Cosmochimica Acta, 59, 17491761.CrossRefGoogle Scholar
Tedesco, D. and Toutain, J.-P. (1991) Chemistry and emission rate of volatiles from White Island Volcano (New Zealand). Geophysical Research Letters, 18, 113116.CrossRefGoogle Scholar
Vergasova, L.P. and Filatov, S.K. (2012) New mineral species in products of fumarole activity of the Great Tolbachik Fissure Eruption. Journal of Volcanology and Seismology, 6, 281289.CrossRefGoogle Scholar
Vergasova, L.P., Filatov, S.K., Serafimova, E.K. and Stalova, G.L. (1984) Piypite K2Cu2O(SO4)2 - a new mineral of volcanic sublimates. Doklady USSR Academy of Sciences, Earth Science Sections, 275, 714717.Google Scholar
Vergasova, L.P., Starova, G.L., Filatov, S.K. and Anan'ev, V.V. (1998) Averievite Cu5(VO4)2O2nMX – a new mineral of volcanic exhalations. Doklady Akademii Nauk, 359, 804807.Google Scholar
Volynets, A.O., Edwards, B.R., Melnikov, D., Yakushev, A. and Griboedova, I. (2015) Monitoring of the volcanic rock compositions during the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka. Journal of Volcanology and Geothermal Research, 307, 120132.CrossRefGoogle Scholar
Zelenski, M.E., Fischer, T.P., de Moor, J.M., Marty, B., Zimmermann, L., Ayalew, D., Nekrasov, A.N. and Karandashev, V.K. (2013) Trace elements in the gas emissions from the Erta Ale volcano, Afar, Ethiopia. Chemical Geology, 357, 95116.CrossRefGoogle Scholar
Zelenski, M., Malik, N. and Taran, Y. (2014) Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik volcano, Kamchatka: Enrichment factors, partition coefficients and aerosol contribution. Journal of Volcanology and Geothermal Research, 285, 136149.CrossRefGoogle Scholar
Zelenski, M., Kamenetsky, V.S. and Hedenquist, J. (2016) Gold recycling and enrichment beneath volcanoes: A case study of Tolbachik, Kamchatka. Earth and Planetary Science Letters, 437, 3546.CrossRefGoogle Scholar
Zhou, H.A., Liu, Z., Ang, S.S. and Zhang, J.-J. (2020) Synthesis, structure, and electrochemical performances of a novel three-dimensional framework K2[Cu(SO4)2]. Solid State Sciences, 100, 106104.CrossRefGoogle Scholar
Supplementary material: File

Siidra et al. supplementary material

Siidra et al. supplementary material

Download Siidra et al. supplementary material(File)
File 986.8 KB