Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T00:31:19.755Z Has data issue: false hasContentIssue false

Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization

Published online by Cambridge University Press:  05 July 2018

Colin Neal
Affiliation:
Institute of Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxon. OX10 8BB
Gordon Stanger
Affiliation:
Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA

Abstract

The occurrence and genesis of Ca(OH)2 and Mg(OH)2 deposits associated with hyperalkaline groundwater from partly serpentinized ultramafic rocks in Northern Oman is reported. Two types of Ca(OH)2 deposit are differentiated; crystalline portlandite formed by the evaporation of Ca2+-2OH spring waters, and a form of amorphous gel, not previously known in nature. The latter is a product of present-day low-temperature serpentinization. Mg(OH)2 (brucite) in both holocrystalline and gel forms is produced by mixing of Mg2+−2H surface waters with a Ca2+-2OH groundwater in both surface and groundwater environments. These results indicate that significant differences exist between the processes of medium- and low-temperature brucite generation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, I., and O'Neil, J. R. (1969) Geol. Soc. Am. Bull. 80, 1947.CrossRefGoogle Scholar
Barnes, I. La March, V. C, and Himmelberg, G. (1967) Science. 156, 830.CrossRefGoogle Scholar
Barnes, I. Rapp, J. B., O'Neil, J. R., Sheppard, R. A., and Gude, A. J., 3rd (1972) Contrib. Mineral. Petrol. 35, 263.CrossRefGoogle Scholar
Barnes, I. O'Neil, J. R., and Trescases, J. J. (1978) Geochim. Cosmochim. Ada. 42, 144.CrossRefGoogle Scholar
Barnes, I. Presser, T. S., Saines, M., Dickson, P., and Van Goos, A. F. K. (1982) Chem. Geol. 35, 147.CrossRefGoogle Scholar
Bentor, Y. K., Gross, S., and Heller, L. (1963) Am. Mineral. 48, 924.Google Scholar
Berger, R. L., and MacGregor, J. D. (1973) J. Am. Ceramic Soc. 56, 73.CrossRefGoogle Scholar
Bowen, N. L., and Tuttle, O. F. (1949) Geol. Soc. Am. Bull. 60, 439.CrossRefGoogle Scholar
Brunauer, S., Kantro, D. I., and Copeland, L. E. (1958) J. Am. Chem. Soc. 80, 761.CrossRefGoogle Scholar
Campbell, I. H. (1975) Geol. Mag. 112, 77.CrossRefGoogle Scholar
Carobbi, G. (1940) Bull. Volcan. 7, 25.CrossRefGoogle Scholar
Derkovic, B. (1973) Bull. Sci. Acad Sci. Arts, Yugoslavia, Sect. A, 18, 134.Google Scholar
Friedman, I, and O'Neil, J. R. (1977) Data of Geochemistry (6th edn.). Geol. Surv. Prof. Paper 440-KK.Google Scholar
Glennie, K. W., Boeuf, M. G. A., Hughes-Clark, M. W, Moody-Stuart, M., Pillar, W. F. H., and Reinhardt, B. M. (1974) Verhandelingen van het Koninklijk Neder-lands Geologisch Mijnbouwkundig Gennotschap. 31, 404 pp.Google Scholar
Greenburg, S. A., and Copeland, L. E. (1960) J. Phys. Chem. 64, 1057.CrossRefGoogle Scholar
Gibb, Sir Alexander and Partners—Institute of Hydrology, (1976) Report to the Sultanate of Oman. Water Resources Survey of Northern Oman 16.Google Scholar
Gross, S., Mazor, E., and Zak, I. (1967) Israel J. Earth Sci. 16, 84.Google Scholar
Hentschel, G. (1961) Fortschr. Mineral. 39, 345.Google Scholar
Hostetler, P. B., Coleman, R. G., Mumpton, F. A., and Evans, B. W. (1966) Am. Mineral. 51, 75.Google Scholar
Klug, H. P., and Alexander, L. E. (1974) X-ray Diffraction Procedures for Polychrystalline and Amorphous Materials. Wiley-Interscience. 996 pp.Google Scholar
Luce, R. W. (1971) Clays Clay Minerals. 19, 335.CrossRefGoogle Scholar
MacCrea, J. M. (1950) J. Chem. Phys. 18, 849.CrossRefGoogle Scholar
Minguzzi, C. (1937) Periodica Mineral. 8, 5.Google Scholar
Moody, J. B. (1976) Lithos. 9, 125.CrossRefGoogle Scholar
Nesbitt, B. E., and Kelly, W. C. (1977) Contrib. Mineral. Petrol. 63, 271.CrossRefGoogle Scholar
Nesbitt, H. W., and Bricker, O. P. (1978) Geochim. Cosmochim. Ada. 42, 403.CrossRefGoogle Scholar
O'Neil, J. R., and Barnes, I. (1971) Ibid. 35, 687.Google Scholar
O'Neil, J. R., Clayton, R. N, and Mayeda, T. K. (1969) J. Chem. Phys. 51, 5547.CrossRefGoogle Scholar
Plummer, L. N., Jones, B. F., and Truesdell. A. H. (1976) USGS Water Resources Investigation, 76, (13), 61 pp.Google Scholar
Saines, M., Dickson, O., and Lambert, P. (1980) Ground-water. 18, 503.CrossRefGoogle Scholar
Sakai, H., Tsutsumi, M., and Kishima, N. (1979) Geol. Soc. Am. Meet. Abstr, 509.Google Scholar
Sharma, T., and Clayton, R. M. (1965) Geochim. Cosmochim. Ada. 29, 134.CrossRefGoogle Scholar
Shtynberg, D. S., and Chachucklin, I. S. (1969) Dokl. Acad. Nauk, SSSR 186, 434.Google Scholar
Tarntani, T., Clayton, R. N., and Mayada, T. K. (1969) Geochim. Cosmochim. Ada. 33, 987.CrossRefGoogle Scholar
Tilley, C. E. (1933) Mineral. Mag. 23, 419.Google Scholar
Truesdell, A. H., and Jones, B. F. (1974) J. Res. USGS. 2, 233.Google Scholar
Tuttle, O. F., and Gittins, J. (1966) Carbonatites, J. Wiley and Sons, 591 pp.Google Scholar
Yoder, H. S. Jr., (1952) Am. J. Sci., Bowen Vol., p. 569.Google Scholar