Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T04:49:57.011Z Has data issue: false hasContentIssue false

Cannonite [Bi2O(SO4)(OH)2] from Alfenza (Crodo, Italy): crystal structure and morphology

Published online by Cambridge University Press:  05 July 2018

G. C. Capitani*
Affiliation:
Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della Terra, Università degli Studi di Milano-Bicocca, Milan, Italy
T. Catelani
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy
P. Gentile
Affiliation:
Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della Terra, Università degli Studi di Milano-Bicocca, Milan, Italy
A. Lucotti
Affiliation:
Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Milan, Italy
M. Zema
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Pavia, Italy

Abstract

Canonite from Alfenza grows as crowded, radiating, acicular aggregates covering bismuthinite crystals. Individual crystals have a lozenge-shaped habit on {010}, the presumed cleavage plane of cannonite. Crystal structure refinements in the P21/c space group of two single crystals led to the following cell parameters: a = 7.7196(5) Å, b = 13.8856(9), c = 5.6980(4), b = 109.174(1)º (R1 = 0.0424); and a = 7.7100(8), b = 13.8717(14), c = 5.6939(6), b = 109.155(2)º (R1 = 0.0438). Hydrogen atoms were also localized in the density-difference Fourier map and refined with soft restraints on the bond distances. Raman and IR spectroscopy confirm the presence of OH groups and the absence of molecular water, and deliver OH···O geometry wholly comparable with the structure refinement. Electron microprobe analyses revealed no significant levels of elements other than those expected in the ideal formula except fluorine which was present up to 0.14 a.p.f.u. The crystal structure can be described in terms of anion-centred OBi4 edge-sharing tetrahedra forming chains running parallel to z and strongly cemented along x by isolated SO4 tetrahedra. Each OBi4 tetrahedron is further connected along y by OH groups, making walls of composition Bi4O2(SO4)2(OH)4 parallel to (010). These walls are tied to each other along y by fewer Bi–O–S bridges and weaker OH···O bonds.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurivillius, B. (1964) The crystal structures of Bi2O2SO4·H2O and BiOHSeO4·H2O. Acta Chemica Scandinavica, 18, 23752378.CrossRefGoogle Scholar
Aurivillius, B. (1987) Pyrolysis products of Bi2(SO4)3. Crystal structure of Bi26O27(SO4)12 and Bi14O16(SO4)5 . Acta Chemica Scandinavica, A41, 415422.CrossRefGoogle Scholar
Aurivillius, B. (1988) Pyrolysis products of Bi2(SO4)3. II. Crystal structure of Bi2O(SO4)2 . Acta Chemica Scandinavica, A42, 95110.CrossRefGoogle Scholar
Bedlivy, D. and Mereiter, K. (1982) Preisingerite, BiO3O(OH)(AsO4)2, a new species from San Juan Province, Argentina: its description and crystal structure. American Mineralogist, 67, 833840.Google Scholar
Britvin, S., Sturla, M., Bonacina, E. and Zambetti, L. (2003) Nuovi minerali della miniera del Duadello Val Pisogne, Brescia. Rivista Mineralogica Italiana, 27, 107108.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. IUCr Monograph on Crystallography 12. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. (2009) Recent developments in the methods and applications of the bond-valence model. Chemical Reviews, 109, 68586919.CrossRefGoogle ScholarPubMed
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Capitani, G.C., Gentile, P., Catelani, T., Lucotti, A., Mugnaioli, E. and Kolb, U. (2014) The Bi sulfate minerals from the Alfenza Mine, Crodo, Italy: An automatic electron diffraction tomography (ADT) investigation. American Mineralogist, in press.Google Scholar
Golič, L., Graunar, M. and Lazarini, F. (1982) Catena- Di-m-hydroxo-m3-oxo-dibismuth(III) sulfate. Acta Crystallographica, B38, 28812883.CrossRefGoogle Scholar
Graunar, M. and Lazarini, F. (1982) Di-m-hydroxo-bis [aquasulfatobismuth(III)]. Acta Crystallographica, B38, 28792881.CrossRefGoogle Scholar
Grice, J.D. (2002) A solution for the crystal structures of bismutite and beyerite. The Canadian Mineralogist, 40, 693698.CrossRefGoogle Scholar
Herzberg, G. (1945) Infrared and Raman Spectra of Polyatomic Molecules. Van Nostrand, Princeton, New Jersey, USA.Google Scholar
Johnston, C.T. (1998) Single-crystal Raman spectroscopic study of dickite. American Mineralogist, 83, 7584.CrossRefGoogle Scholar
Krivovichev, S.V. (2012) Derivation of bond-valence parameters for some cations-oxygen pairs on the basis of empirical relationships between ro and b. Zeitschrift für Kristallographie, 227, 575579.CrossRefGoogle Scholar
Krivovichev, S.V., Mentre, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle ScholarPubMed
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mereiter, K. and Preisinger, A. (1986 ) Kristallstrukturdaten der wismutminerale atelestit, mixit und pucherit. Anzeiger der Osterreichische Akademie der Wissenschaften, 123, 7981.Google Scholar
Pinto, D., Garavelli, A. and Mitolo, D. (2013) Balićžunićite, IMA 2012-098. CNMNC Newsletter No. 16, August 2013, page 2699; Mineralogical Magazine, 77, 26952709.Google Scholar
Pipino, G. (2003) Oro, Miniere, Storia. Miscellanea di giacimentologia e storia mineraria Italiana. Ed. Museo Storico dell’Oro Italiano, Ovada, Italy, 510 pp.Google Scholar
Radtke, A.S., Taylor, C.M. and Frost, J.E. (1967) Bismuth and tin minerals in gold- and silver-bearing sulphide ores, Ohio Mining District, Marysvale, Utah. U.S. Geological Survey Professional Paper, 575-D, D127130.Google Scholar
Roggiani, A.G. (1948) Appunti per una descrizione della miniera aurifera dell’Alfenza in territorio di Crodo in Val d’Ossola. Natura, XXXIX, 1, 921.Google Scholar
Roggiani, A.G. (1970) Appunti per una mineralogia dell’Ossola: Oro nativo e cosalite: due ulteriori conferme sulla validità scientifica dei giacimenti auriferi dell’Alfenza (Crodo). Illustrazione Ossolana, XII, 4, 104112.Google Scholar
Rögner, P. (2005) Riomarinaite, a new bismuth mineral from Falcacci stope, Rio Marina, Elba (Italy). Der Aufschluss, 56, 5360. (in German with English abstract).Google Scholar
Sheldrick, G.M. (1996) SADABS, Siemens area detector absorption correction software. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997) SHELXL-97, A program for crystal structure refinement. University of Göttigen, Germany, release 97-2.Google Scholar
Stanley, C.J., Roberts, A.C., Harris, D.C., Criddle, A.J. and Szymański, J.T. (1992) Cannonite , Bi2O(OH)2SO4, a new mineral from Marysvale, Utah, USA. Mineralogical Magazine, 56, 605609.CrossRefGoogle Scholar
Stella, A. (1943) I giacimenti auriferi delle Alpi Italiane. Memorie descrittive della Carta Geologica d’Italia, 27, 44.Google Scholar
Supplementary material: File

Capitani et al. supplementary material

CIF

Download Capitani et al. supplementary material(File)
File 22 KB
Supplementary material: File

Capitani et al. supplementary material

Structure Factors 1

Download Capitani et al. supplementary material(File)
File 66.7 KB
Supplementary material: File

Capitani et al. supplementary material

Structure Factors 2

Download Capitani et al. supplementary material(File)
File 90.7 KB