Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T04:01:00.172Z Has data issue: false hasContentIssue false

Chemical variability in wakabayashilite: a real feature or an analytical artifact?

Published online by Cambridge University Press:  05 July 2018

L. Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Firenze, Via G. La Pira 4, I-50121 Florence, Italy
P. Bonazzi
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Firenze, Via G. La Pira 4, I-50121 Florence, Italy
M. Zoppi
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Firenze, Via G. La Pira 4, I-50121 Florence, Italy
P. G. Spry
Affiliation:
Department of Geological and Atmospheric Sciences, 253 Science I, Iowa State University, Ames, Iowa 50011-3212, USA

Abstract

Wakabayashilite is a rare mineral with ideal formula [(As,Sb)6S9][As4S5]. Its structure consists of an [M6S9] bundle-like unit (M = As, Sb) running along the [001] axis and [As4S5] cage-like molecules. In this study, samples of wakabayashilite from different occurrences (Khaidarkan, Kyrgyzstan; Jas Roux, France; White Caps mine, USA; Nishinomaki mine, Japan) were selected to verify the possible presence of different molecular groups replacing the As4S5 molecule. Given the chemical (electron probe microanalysis-wavelength dispersive spectroscopy), spectroscopic (micro-Raman) and structural (single-crystal X-ray diffraction) results obtained, it appears evident that only the As4S5 molecular group is present in the wakabayashilite structure and that the apparent non-stoichiometry reported in literature is actually due to unreliable chemical analyses. The structural role of the minor elements (Cu, Zn and Tl) in wakabayashilite is also discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballirano, P. and Maras, A. (2002) Refinement of the crystal structure of arsenolite, As2O3. Zeitschrift für Kristallographie, 217, 177178.Google Scholar
Bindi, L., Popova, V.I. and Bonazzi, P. (2003) Uzonite, As4S5, from the type-locality: X-ray single crystal study and lighting experiments. The Canadian Mineralogist, 41, 14631468.CrossRefGoogle Scholar
Bonazzi, P. and Bindi, L. (2008) A crystallographic review of arsenic sulfides: Effects of chemical variations and changes induced by light exposure. Zeitschrift für Kristallographie, 223, 132147.Google Scholar
Bonazzi, P., Bindi, L., Popova, V.I., Pratesi, P. and Menchetti, S. (2003) Alacranite, As8S9: structural study of the holotype and re-assignment of the original chemical formula. American Mineralogist, 88, 17961800.CrossRefGoogle Scholar
Bonazzi, P., Lampronti, G.I., Bindi, L. and Zanardi, S. (2005) Wakabayashilite, [(As,Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning, and revised chemical formula. American Mineralogist, 90, 11081114.CrossRefGoogle Scholar
Davorin, B. and Sohrab, R. (1989) Structural and electronic properties of arsenic chalcogenide molecules. Physical Review, B39, 1083110838.Google Scholar
Gruzdev, V.S., Volgin, V.Y., Shumkova, N.G., Chernitsova, N.M. and Ivanov, V.S. (1975) Wakabayashilite, (As,Sb)2S3, from arsenic-antimony- mercury deposits of the U.S.S.R. Doklady Earth Science Sections, 224, 418421.[in Russian].Google Scholar
Hamman, M. and Santiago, J.J. (1986) Evidence for As4S6 molecule as a structural model for amorphous arsenic sulfide from mass spectrometric analysis. Solid State Communications, 59, 725727.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, Vol. IV. Kynock, Dordrecht, The Netherlands. 366 pp.Google Scholar
Johan, Z. and Mantienne, J. (2000) Thallium-rich mineralization at Jas Roux, Hautes-Alpes, France: a complex epithermal, sediment-hosted, ore-forming system. Journal of the Czech Geological Society, 45, 8198.Google Scholar
Kato, A., Sakurai, K.I. and Oshumi, K. (1970) No. 26 Wakabayashilite (As,Sb)11S18. Pp. 92–93 in: Introduction to Japanese Minerals. International Mineralogical Association – International Association on the Genesis of Ore Deposits meeting, 1970. Geological Survey of Japan, Tokyo.Google Scholar
Nakai, I., Yokoi, H. and Nagashima, K. (1986) Crystal chemistry of the system arsenic-antimony-sulfur (I): Synthesis of wakabayashilite and synthetic study on the solid solutions in the As2S3-Sb2S3 system. Mineralogical Journal, 13, 212222.CrossRefGoogle Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171. 31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, UK.Google Scholar
Reshetnyak, N.B. and Cherepanov, V.A. (1976) Raman spectra of some arsenic sulfide minerals. Konstitutsiia Svoistva Mineralov, 10, 6571.[in Russian].Google Scholar
Scott, D.J. and Nowacki, W. (1976) The substructure of wakabayashilite (As,Sb)20S30. Zeitschrift für Kristallographie, 144, 422.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Spiridonov, E.M. (1989) Wakabayashilite (As,Sb)11S18 of the Khaidarkan deposit. Novye Dannye Mineralakh, 36, 166170.Google Scholar
Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 11261128.CrossRefGoogle Scholar
Zhang, B. (1985) The discovery of wakabayashilite in China. Acta Mineralogica Sinica, 5, 270274.[in Chinese].Google Scholar
Supplementary material: PDF

Bindi et al. supplementary material

Table 6a

Download Bindi et al. supplementary material(PDF)
PDF 2.5 MB
Supplementary material: PDF

Bindi et al. supplementary material

Table 6b

Download Bindi et al. supplementary material(PDF)
PDF 2.5 MB
Supplementary material: File

Bindi et al. supplementary material

CIF 1

Download Bindi et al. supplementary material(File)
File 12.5 KB
Supplementary material: File

Bindi et al. supplementary material

CIF 2

Download Bindi et al. supplementary material(File)
File 14.5 KB