Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T21:56:41.708Z Has data issue: false hasContentIssue false

Commentary on “Constraints on the Equations of State of stiff anisotropic minerals: rutile, and the implications for rutile elastic barometry” [Miner. Mag. 83 (2019) pp. 339–347]

Published online by Cambridge University Press:  18 March 2020

Ross J. Angel*
Affiliation:
Istituto di Geoscienze e Georisorse, CNR, Via Giovanni Gradenigo, 6, I-35131Padova, Italy
Matteo Alvaro
Affiliation:
Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata 1, I-27100, Pavia, Italy
Peter Schmid-Beurmann
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, D-48149 Münster, Germany
Herbert Kroll
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, D-48149 Münster, Germany
*
*Author for correspondence: Ross J. Angel, Email: rossjohnangel@gmail.com

Abstract

The conclusion of Zaffiro et al. (2019; Constraints on the Equations of State of stiff anisotropic minerals: rutile, and the implications for rutile elastic barometry. Mineralogical Magazine, 83, 339–347) that the Mie–Grüneisen–Debye (MGD) Equation of State (EoS) cannot fit the available data for rutile is shown to be incorrect, even though rutile exhibits significant anisotropic thermal pressure which invalidates the quasi-harmonic approximation used as the basis for the MGD EoS. The refined parameters for the MGD EoS of rutile are: KTR0= 205.05(25) GPa, $K_{TR0}^{\prime} $ = 7.2(5), θD = 399(20) K, γ0= 1.40(2) and q = 1.5(7). This EoS predicts volumes, bulk moduli and volume thermal expansion coefficients for rutile at metamorphic conditions that are statistically indistinguishable from those predicted by the ‘isothermal’ type of EoS reported previously.

Type
Commentary
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Anderson, O.L. (1995) Equations of State of Solids for Geophysics and Ceramic Science. Oxford University Press, Oxford, UK, 432 pp.Google Scholar
Angel, R.J., Gonzalez-Platas, J. and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405419.Google Scholar
Angel, R.J., Alvaro, M. and Nestola, F. (2018) 40 years of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. Physics and Chemistry of Minerals, 45, 95113.CrossRefGoogle Scholar
Angel, R.J., Miozzi, F. and Alvaro, M. (2019a) Limits to the validity of thermal-pressure equations of state. Minerals, 9, 562.CrossRefGoogle Scholar
Angel, R.J., Murri, M., Mihailova, B. and Alvaro, M. (2019b) Stress, strain and Raman shifts. Zeitschrift für Kristallographie, 234, 129140.10.1515/zkri-2018-2112CrossRefGoogle Scholar
Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809824.10.1103/PhysRev.71.809CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333383.Google Scholar
Isaak, D.G., Carnes, J.D., Anderson, O.L., Cynn, H. and Hake, E. (1998) Elasticity of TiO2 rutile to 1800 K. Physics and Chemistry of Minerals, 26, 3143.CrossRefGoogle Scholar
Jackson, I. (1998) Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. Geophysical Journal International, 134, 291311.Google Scholar
Kroll, H., Kirfel, A., Heinemann, R. and Barbier, B. (2012) Volume thermal expansion and related thermophysical parameters in the Mg,Fe olivine solid-solution series. European Journal of Mineralogy, 24, 935956.CrossRefGoogle Scholar
Kroll, H., Schmid-Beurmann, P., Sell, A., Buescher, J., Dohr, R. and Kirfel, A. (2019) Thermal expansion and thermal pressure in Co and Ni olivines: a comparison with Mn and Fe olivines. European Journal of Mineralogy, 31, 313324.CrossRefGoogle Scholar
Musiyachenko, K.A., Murri, M., Prencipe, M., Angel, R.J. and Alvaro, M. (2020) A new Grüneisen tensor for rutile and its application to host-inclusion systems. in prep.Google Scholar
Rosenfeld, J.L. and Chase, A.B. (1961) Pressure and temperature of crystallization from elastic effects around solid inclusion minerals? American Journal of Science, 259, 519541.10.2475/ajs.259.7.519CrossRefGoogle Scholar
Zaffiro, G., Angel, R.J. and Alvaro, M. (2019) Constraints on the equations of state of stiff anisotropic minerals: rutile, and the implications for rutile elastic barometry. Mineralogical Magazine, 83, 339347.CrossRefGoogle Scholar
Supplementary material: File

Angel et al. supplementary material

Angel et al. supplementary material

Download Angel et al. supplementary material(File)
File 3.9 KB