Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T03:16:25.482Z Has data issue: false hasContentIssue false

Complex hydrogen bonding and thermal behaviour over a wide temperature range of kainite KMg(SO4)Cl⋅2.75H2O

Published online by Cambridge University Press:  18 February 2022

Artem S. Borisov
Affiliation:
Department of Crystallography, St. Petersburg State University, University emb. 7/9, 199034, St. Petersburg, Russia Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova emb. 2, 199034, St. Petersburg, Russia
Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University emb. 7/9, 199034, St. Petersburg, Russia Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova emb. 2, 199034, St. Petersburg, Russia
Valery L. Ugolkov
Affiliation:
Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova emb. 2, 199034, St. Petersburg, Russia
Alexey N. Kuznetsov
Affiliation:
Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii prosp., 31, 119991, Moscow, Russia Department of Inorganic Chemistry, Faculty of Chemistry, Moscow State University, Vorobievy Gory, 119991, Moscow, Russia
Vera A. Firsova
Affiliation:
Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova emb. 2, 199034, St. Petersburg, Russia
Dmitri O. Charkin
Affiliation:
Department of Inorganic Chemistry, Faculty of Chemistry, Moscow State University, Vorobievy Gory, 119991, Moscow, Russia
Natalia V. Platonova
Affiliation:
X-ray Diffraction Resource Center, St. Petersburg State University, University emb. 7/9, 199034, St. Petersburg, Russia
Igor V. Pekov
Affiliation:
Department of Mineralogy, Faculty of Geology, Moscow State University, Vorobievy Gory, 119991, Moscow, Russia
*
*Author for correspondence: Oleg I. Siidra, Email: o.siidra@spbu.ru

Abstract

Kainite, KMg(SO4)Cl⋅2.75H2O, is one of the most common hydrated sulfate minerals, and it plays an important role as a source of potassium. However, its properties and structure have, to date, been insufficiently studied. In our present work, kainite was investigated using multiple techniques, including single-crystal and powder X-ray diffraction, thermogravimetry, differential scanning calorimetry (DSC), and infrared spectroscopy (IR). The mineral is monoclinic, C2/m, a = 19.6742(2), b = 16.18240(10), c = 9.49140(10) Å, β = 94.8840(10)°, V = 3010.86(5) Å3 and Z = 16. The structure was refined to R1 = 0.0230 for 3080 unique observed reflections with |Fo| ≥ 4σF. The complex hydrogen bonding system for kainite is described for the first time. The structure of kainite contains seven symmetrically independent sites occupied by water molecules, six of which are strongly bonded to Mg2+ cations while the seventh resides in the framework cavities. The acceptors of the hydrogen bonds are either chloride anions, neighbouring water molecules or oxygens atoms of sulfate groups. A bifurcated hydrogen bond was described for one of the water molecules. Based on the analysis of the crystal structure, we have confirmed and propose the correct formula for kainite as KMg(SO4)Cl⋅2.75H2O. The thermal studies of kainite in the temperature range of –150°C to +600°C indicate its stability to 190°C. The decomposition products are K2Mg2(SO4)3, KCl and K2SO4. The thermal expansion was calculated, which for kainite has a character typical for monoclinic crystals and similar to the compressibility tensor described earlier.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Abdel Wahed, M.S.M., Mohamed, E.A., El-Sayed, M.I., M'nif, A. and Sillanpää, M. (2015) Crystallization sequence during evaporation of a high concentrated brine involving the system Na–K–Mg–Cl–SO4–H2O. Desalination, 355, 1121.CrossRefGoogle Scholar
Arnold, H., Kurtz, W., Richter-Zinnius, A., Bethke, J. and Heger, G. (1981) The phase transition of K2SO4 at about 850 K. Acta Crystallographica, B37, 16431651.CrossRefGoogle Scholar
Babel, M. and Schreiber, B.C. (2014) Geochemistry of evaporites and evolution of seawater. Pp. 483560 in: Treatise on Geochemistry, 2nd ed., vol. 9. (Holland, H.D. and Turekian, K.K., editors). Elsevier, Oxford, UK.CrossRefGoogle Scholar
Barlow, N. (2008) Mars: An Introduction to its Interior, Surface and Atmosphere. Cambridge University Press, Cambridge, UK, 286 pp.CrossRefGoogle Scholar
Bish, L. and Scanlan, M.K. (2006) The hydration and dehydration of hydrous mixed-cations. Lunar and Planetary Science XXXVII, Extended abstract 1011 [available at https://www.lpi.usra.edu/meetings/lpsc2006/pdf/1011.pdf].Google Scholar
Braitsch, O. (1971) Salt Deposits: Their Origin and Composition. Springer, Berlin, 299 pp.CrossRefGoogle Scholar
Bruker, (2014) Topas 5.0. General profile and structure analysis software for powder diffraction data. Bruker A.X.S., Karlsruhe, Germany.Google Scholar
Bubnova, R.S., Firsova, V.A. and Filatov, S.K. (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (ThetaToTensor-TTT). Glass Physics and Chemistry, 39, 347350.CrossRefGoogle Scholar
Campbell, A.N., Downes, K.W. and Samis, C.S. (1934) The system MgCl2–KCl–MgSO4–K2SO4–H2O at 100°. Journal of the American Chemical Society, 56, 25072512.CrossRefGoogle Scholar
Censi, P., Sposito, F., Inguaggiato, C., Venturi, M., Censi, V. and Falcone, E.E. (2016) Weathering of evaporites: natural versus anthropogenic signature on the composition of river waters. Rendiconti Lincei, 27, 2937.CrossRefGoogle Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended library. Springer Dordrecht Heidelberg New York London, 1726 pp.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010) Adranosite, (NH4)4NaAl2(SO4)Cl(OH)2, a new ammonium sulfate chloride from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 315321.CrossRefGoogle Scholar
Dhanuskodi, S. and Jeyakumari, A.P. (2001) EPR studies of VO2+ ions in kainite single crystals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57, 971975.CrossRefGoogle Scholar
Dhanuskodi, S. and Jeyakumari, A.P. (2004) EPR studies of Cr3+ ions in kainite single crystals. Materials Chemistry and Physics, 87, 292296.CrossRefGoogle Scholar
Eggenkamp, H.G.M., Kreulen, R. and Van Groos A.F., Koster (1995) Chlorine stable isotope fractionation in evaporates. Geochimica et Cosmochimica Acta, 59, 51695175.CrossRefGoogle Scholar
Eugster, H.P, Harvie, C.E. and Weare, J.H. (1980) Mineral equilibria in a six-component seawater system, Na–K–Mg–Ca–SO4–Cl–H2O, at 25°C. Geochimica et Cosmochimica Acta, 44, 13351347.CrossRefGoogle Scholar
Fathima A., Lesly, Sivananthan, S., Somasundari, C.V. and Neelakandapillai, N. (2012) X-ray diffraction and micro hardness measurement on KClxBr1–x single crystals doped with ZnO grown from aqueous solution. Archives of Physics Research, 3, 407410.Google Scholar
Filatov, S.K., Andrianova, L.V. and Bubnova, R.S. (1984) Regularities of thermal deformations in monoclinic crystals. Crystal Research and Technology, 19, 563569.CrossRefGoogle Scholar
Fleck, M., Kolitsch, U. and Hertweck, B. (2002) Natural and synthetic compounds with kröhnkite-type chains: review and classification. Zeitschrift für Kristallographie, 217, 435443.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2016) Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals. Acta Crystallographica, B72, 602625.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2018) Bond-length distributions for ions bonded to oxygen: results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4. Acta Crystallographica, B74, 7996.Google Scholar
Hancer, M. and Miller, J.D. (2000) The flotation chemistry of potassium double salts: Schoenite, kainite, and carnallite. Minerals Engineering, 13, 14831493.CrossRefGoogle Scholar
Hawthorne, F.C. (1992) The role of OH and H2O in oxide and oxysalt minerals. Zeitschrift für Kristallographie, 201, 183206.CrossRefGoogle Scholar
Hawthorne, F.C. (2015) Toward theoretical mineralogy: A bond-topological approach. American Mineralogist, 100, 696713.CrossRefGoogle Scholar
Hawthorne, F.C., Burns, P.C. and Krivovichev, S.V. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance (Riibe, PH, editor). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hryniv, S., Parafiniuk, J. and Peryt, T.M. (2007) Sulphur isotopic composition of K–Mg sulphates of the Miocene evaporites of the Carpathian Foredeep, Ukraine. Pp. 265273 in: Geological Society, London, Special Publications, Vol. 285 (Schreiber, B.C., Lugli, S. and Bąbel, M., editors). The Geological Society of London, UK.Google Scholar
Jänecke, E. (1912) Über reziproke Salzpaare. II. Zeitschrift für Physikalische Chemie, 80U, 112.CrossRefGoogle Scholar
Jena, S.K. (2021) A review on potash recovery from different rock and mineral sources. Mining, Metallurgy and Exploration, 38, 4768.CrossRefGoogle Scholar
Kassner, B. (1958) Die Bildung von Kainit im Ultraschallfeld als Festkörperreaktion und Untersuchungen über den Anhydrokainit. Zeitschrift für anorganische und allgemeine Chemie, 297, 139145.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (2017) Vienna Ab-initio Simulation Package (VASP), v.5.4.4. VASP Software GmbH, Vienna.Google Scholar
Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758.CrossRefGoogle Scholar
Mereiter, K. (1979) Refinement of the crystal structure of langbeinite K2Mg2(SO4)3. Neues Jahrbuch fuer Mineralogie, Monatshefte, 182188.Google Scholar
Miller, J.D. and Yalamanchili, M.R. (1994) Fundamental aspects of soluble salt flotation. Minerals Engineering, 7, 305317.CrossRefGoogle Scholar
Murthy, T.S.N., Srinivas, V., Dayanand, C. and Salagram, M. (1992 a) EPR Spectra of SO4 centres in X-irradiated kainite (KMgSO4⋅3H2O) crystals. Physica Status Solidi (a), 133, K33K36.CrossRefGoogle Scholar
Murthy, T.S.N., Srinivas, V., Dayanand, C. and Salagram, M. (1992 b) EPR characterisation of SO3 radical in X-irradiated kainite (KMgClSO4⋅3H2O) crystals. Solid State Communications, 84, 673677.CrossRefGoogle Scholar
Narasimhulu, K.V., Sunandana, C.S. and Rao, J.L. (2000) Electron paramagnetic resonance studies of Cu2+ ions in KZnClSO4⋅3H2O: an observation of Jahn–Teller distortion. Journal of Physics and Chemistry of Solids, 61, 12091215.CrossRefGoogle Scholar
Nazzareni, S., Comodi, P. and Hanfland, M. (2018) High-pressure single-crystal synchrotron X-ray diffraction of kainite (KMg(SO4)Cl⋅3H2O). Physics and Chemistry of Minerals, 45, 727743.CrossRefGoogle Scholar
Pasero, M (2022) The New IMA List of Minerals. http://cnmnc.main.jp/Google Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Lykova, I.S., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015) Sanguite, KCuCl3, a new mineral from the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 53, 633641.CrossRefGoogle Scholar
Rao, S.N., Vedanand, S., Ravikumar, R., Ravikumar, R.V.S.S.N. and Reddy, Y.P. (1994) Optical absorption spectra of cobalt and nickel doped kainite. Solid State Communications, 92, 815819.CrossRefGoogle Scholar
Rice, M.S., Bell, J.F. III, Cloutis, E.A., Wang, A., Ruff, S.W., Craig, M.A., Bailey, D.T., Johnson, J.R., De Souza, P.A Jr. and Farrand, W.H. (2010) Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping. Icarus, 205, 375395.CrossRefGoogle Scholar
Rigaku (2016) PDXL: Integrated X-ray Powder Diffraction Software. Rigaku Corporation, Oxford, UK.Google Scholar
Rigaku (2021) CrysAlisPro Software System Version 1.171.41.103a. Rigaku Corporation, Oxford, UK.Google Scholar
Robinson, P.D., Fang, J.H. and Ohya, Y. (1972) The crystal structure of kainite. American Mineralogist, 57, 13251332.Google Scholar
Rozas, I., Alkorta, I. and Elguero, J. (1998) Bifurcated hydrogen bonds: three-centered interactions. Journal of Physical Chemistry A, 102, 99259932.CrossRefGoogle Scholar
Salagram, M., Seetharam, K., Siddambary, P. and Murthy, T.S.N. (1988) Infrared characterisation of the oxyanion in kainite. Physica Status Solidi (a), 106, K185K190.CrossRefGoogle Scholar
Salagram, M., Madhukar, K., Murthy, T.S.N. and Sunandana, C.S. (1994) ESR characterisation of SO3 and SO4 radicals in X-irradiated kainite (KMgClSO4⋅3H2O). Spectrochimica Acta, A50, 13091315.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Shields, G.A. and Mills, B.J.W. (2021) Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology, 49, 299303.CrossRefGoogle Scholar
Shoval, S. and Yariv, S. (1985) The effect of alkali-chloride on the thermal hydrolysis of hydrated magnesium-chloride. Thermochimica Acta, 92, 819822.CrossRefGoogle Scholar
Shoval, S., Yariv, S., Kirsch, Y. and Peled, H. (1986) The effect of alkali halides on the thermal hydrolysis of magnesium chloride and magnesium bromide. Thermochimica Acta, 109, 207226.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Lukina, E.A., Zaitsev, A.N. and Shilovskikh, V.V. (2018) Belousovite, KZn(SO4)Cl, a new sulfate mineral from the Tolbachik volcano with apophyllite sheet-topology. Mineralogical Magazine, 82, 10791088.CrossRefGoogle Scholar
Spencer, R.J. (2000) Sulfate minerals in evaporite deposits. Pp. 173192 in: Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance (Riibe, PH, editor). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Steiner, T. (2002) The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41, 4876.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Subramanian, P. and Hariharan, N. (1986) Electron paramagnetic resonance study of Mn2+ in kainite. Pramana, 26, 555560.CrossRefGoogle Scholar
Sun, J., Ruzsinszky, A. and Perdew, J.P. (2015) Strongly constrained and appropriately normed semilocal density functional. Physical Review Letters, 115, 036402.CrossRefGoogle ScholarPubMed
Taylor, R., Kennard, O., and Versichel, W. (1984) Geometry of the nitrogen–hydrogen⋅⋅⋅oxygen–carbon (N–H⋅⋅⋅O:C) hydrogen bond. 2. Three-center (bifurcated) and four-center (trifurcated) bonds. Journal of American Chemical Society, 106, 244248.CrossRefGoogle Scholar
Wang, H.-Y., Guo, H.-M., Xiu, W., Bauera, J., Sun, G.-X., Tang, X.-H. and Norra, S. (2019) Indications that weathering of evaporite minerals affects groundwater salinity and As mobilization in aquifers of the northwestern Hetao Basin, China. Applied Geochemistry, 109, 104416.CrossRefGoogle Scholar
Warren, J.K. (2010) Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98, 217268.CrossRefGoogle Scholar
Zhu, L., Seff, K., Witzke, T. and Nasdala, L. (1997) Crystal structure of Zn4Na(OH)6SO4Cl⋅6H2O. Journal of Chemical Crystallography, 27, 325329.CrossRefGoogle Scholar
Zincken, C. (1865) Ueber ein neues salz von Leopoldshall bei Stassfurth. Berg- und Huttenmannische Zeitung, 24, 7980.Google Scholar
Supplementary material: File

Borisov et al. supplementary material

Borisov et al. supplementary material

Download Borisov et al. supplementary material(File)
File 118.6 KB