Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T23:34:14.504Z Has data issue: false hasContentIssue false

The compositional variability of eudialyte-group minerals

Published online by Cambridge University Press:  05 July 2018

J. Schilling
Affiliation:
Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrabe 56, D-72074 Tübingen, Germany
F.-Y. Wu
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
C. McCammon
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstrabe 30, D-95447 Bayreuth, Germany
T. Wenzel
Affiliation:
Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrabe 56, D-72074 Tübingen, Germany
M. A. W. Marks
Affiliation:
Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrabe 56, D-72074 Tübingen, Germany
K. Pfaff
Affiliation:
Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrabe 56, D-72074 Tübingen, Germany
D. E. Jacob
Affiliation:
Institut für Geowissenschaften und Earth System Science Research Centre, Johannes Gutenberg-Universität, JJ. Becher-Weg 21, D-55128 Mainz, Germany
G. Markl*
Affiliation:
Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrabe 56, D-72074 Tübingen, Germany

Abstract

Eudialyte-group minerals (EGM) represent the most important index minerals of persodic agpaitic systems. Results are presented here of a combined EPMA, Mössbauer spectroscopy and LA-ICP-MS study and EGM which crystallized in various fractionation stages from different parental melts and mineral assemblages in silica over- and undersaturated systems are compared. Compositional variability is closely related to texture, allowing for reconstruction of locally acting magmatic to hydrothermal processes. Early-magmatic EGM are invariably dominated by Fe whereas hydrothermal EGM can be virtually Fe-free and form pure Mn end-members. Hence the Mn/Fe ratio is the most suitable fractionation indicator, although crystal chemistry effects and co-crystallizing phases play a secondary role in the incorporation of Fe and Mn into EGM. Mössbauer spectroscopy of EGM from three selected occurrences indicates the Fe3+/ΣFe ratio to be governed by the hydration state of EGM rather than by the oxygen fugacity of the coexisting melt. Negative Eu anomalies are restricted to EGM that crystallized from alkali basaltic parental melts while EGM from nephelinitic parental melts invariably lack negative Eu anomalies. Even after extensive differentiation intervals, EGM reflect properties of their respective parental melts and the fractionation of plagioclase and other minerals such as Fe-Ti oxides, amphibole and sulphides.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, F.D. (1903) The Monteregian Hills – A Canadian Petrographical Province? Journal of Geology, 11, 239282.CrossRefGoogle Scholar
Adamson, O.J. (1944) The petrology of the Norra Kärr district. Geologiska Foereningen i Stockholm Foerhandlingar, 66, 113255.CrossRefGoogle Scholar
Allan, J.F. (1992) Geology and mineralization of the Kipawa Yttrium-Zirconium Prospect, Quebec. Exploration and MiningGeolog y, 1, 283295.Google Scholar
Andersen, T., Erambert, M., Larsen, A.O. and Selbekk, R.S. (2010) Petrology of nepheline syenite pegmatites in the Oslo rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. Journal of Petrology, 51, 23032325.CrossRefGoogle Scholar
Anthony, E.Y., Segalstad, T.V. and Neumann, E.-R. (1989) An unusual mantle source region for nephelinites from the Oslo Rift, Norway. Geochimica et Cosmochimica Acta, 53, 10671076.CrossRefGoogle Scholar
Arzamastsev, A.A., Bea, F., Arzamastseva, L.V. and Montero, P. (2002) Rare earth elements in rocks and minerals from alkaline plutons of the Kola Peninsula, NW Russia, as indicators of alkaline magma evolution. Russian Journal of Earth Sciences, 10, 187209.CrossRefGoogle Scholar
Arzamastsev, A.A., Bea, F., Arzamastseva, L.V. and Montero, P. (2005) Trace elements in minerals of the Khibiny Massif as indicators of mineral formation evolution: results of LA-ICP-MS study. Geochemistry International, 43, 7185.Google Scholar
Bailey, J.C., Gwozdz, R., Rose-Hansen, J. and Sorensen, H. (2001) Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 3553.CrossRefGoogle Scholar
Bindemann, I.N., Davis, A.M. and Drake, M.J. (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochimica et Cosmochimica Acta, 62, 11751193.CrossRefGoogle Scholar
Blaxland, A.B. (1977) Agpaitic magmatism at Norra Kärr? Rb-Sr isotopic evidence. Lithos, 10, 18.CrossRefGoogle Scholar
Blundy, J.D. and Wood, B.J. (1991) Crystal-chemical controls on the partitioning of Ba and Sr between plagioclase feldspar, silicate melts and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55, 193209.CrossRefGoogle Scholar
Bohse, H., Brooks, C.K. and Kunzendorf, H. (1971) Field observations on the kakortokites of the Ilímaussaq intrusion, South Greenland, including mapping and analyses by portable X-ray fluorescence equipment for zirconium and niobium. Rapport Gronlands Geologiske Undersøgelse, 38, 43 pp.Google Scholar
Bouabdli, A., Dupuy, C. and Dostal, J. (1988) Geochemistry of Mesozoic alkaline lamprophyres and related rocks from the Tamazert massif, High Atlas (Morocco). Lithos, 22, 4358.CrossRefGoogle Scholar
Bridgewater, D. and Harry, W.T. (1968) Anorthosite xenoliths and plagioclase megacrysts in Precambrian intrusions of South Greenland. Meddelelser om Gronland, 185, 1243.Google Scholar
Brøgger, W.C. (1890) Die Mineralien der Syenitpegmatitgänge der südnorwegischen Augit und Nephelinsyenite. Zeitschrift für Kristallographie, 16, 163.Google Scholar
Christophe-Michel-Lévy, M. (1961) Reproduction artificielle de quelques minéraux riches en zirconium (zircon, eudialyt, elpidite): Comparison avec leurs conditions naturelles de formation. Bulletin de la Société française de Minéralogie, 84, 265269.Google Scholar
Coulson, I.A. (1997) Post-magmatic alteration in eudialyte from the North Qôroq centre, South Greenland. Mineralogical Magazine, 61, 99109.CrossRefGoogle Scholar
Coulson, I.A. and Chambers, A.D. (1996) Patterns of zonation in rare-earth-bearing minerals in nepheline syenites of the North Qôroq center, South Greenland. The Canadian Mineralogist, 34, 11631178.Google Scholar
Currie, K.L., Eby, G.N., and Gittins, F. (1986) The petrology of the Mont Saint-Hilaire complex, southern Quebec: An alkaline gabbro-peralkaline syenite association. Lithos, 19, 6581.CrossRefGoogle Scholar
Eby, G.N. (1985) Sr and Pb isotopes, U and Th chemistry of the alkaline Monteregian and White Mountain igneous provinces, eastern North America. Geochimica et Cosmochimica Acta, 49, 11431153.CrossRefGoogle Scholar
Edgar, A.D. and Blackburn, C.E. (1972) Eudialyte from the Kipawa Lake area, Temiscamingue County, Quebec. The Canadian Mineralogist, 11, 554559.Google Scholar
Ewart, A. and Griffin, W.L. (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117, 251284.CrossRefGoogle Scholar
Ferguson, J. (1964) Geology of the Ilímaussaq alkaline intrusion, South Greenland. Description of map and structure. Bulletin Grønlands Geologiske Undersøgelse, 39, 182.Google Scholar
Gerasimovskiy, V.I., Volkov, V.P., Kogarko, L.N., and Polyakov, A.I. (1974) Kola peninsula. Pp. 206221 in: The alkaline rocks (Sørensen, H., editor). Wiley, London.Google Scholar
Gold, D.P. (1967) Alkaline ultrabasic rocks in the Montreal area, Quebec. Pp. 288302 in: Ultramafic and Related Rocks (Wyllie, P.J., editor). Wiley, New York.Google Scholar
Greenwood, R.C. and Edgar, A.D. (1984) Petrogenesis of the gabbros from Mt St. Hilaire, Quebec, Canada. Geological Journal, 19, 353376.CrossRefGoogle Scholar
Griffin, W.L., Powell, W.J., Pearson, N.J. and O’Reilly, S.Y. (2008) GLITTER: Data reduction software for laser ablation ICP-MS (appendix). Pp 308–311 in: Laser Ablation in the Earth Sciences (Sylvester, P., editor). Mineralogical Association of Canada (MAC) Short Course Series Vol. 40, Ottawa, Ontario, Canada.Google Scholar
Harris, C. (1986) A quantitative study of magmatic inclusions in the plutonic ejecta of Ascension Island. Journal of Petrology, 27, 251276.CrossRefGoogle Scholar
Harris, C. and Rickard, R.S. (1987) Rare-earth-rich eudialyte and dalyite from a peralkaline granite dyke at Straumsvola, Dronning Maud Land, Antarctica. The Canadian Mineralogist, 25, 755762.Google Scholar
Harris, C., Cressey, J.D., Bell, F.B., Atkins, F.B. and Beswetherick, S. (1982) An occurrence of rare-earthrich eudialyte from Ascension Island, South Atlantic. Mineralogical Magazine, 46, 421425.CrossRefGoogle Scholar
Hettmann, K. (2009) Der Randpegmatite der Ilímaussaq Intrusion, Südwest Grönland. Diplomat hesis, Universität Tübingen, Germany, 84 pp.Google Scholar
Horváth, L. and Gault, R.A. (1990) The mineralogy of Mont Saint Hilaire, Quebec. The Mineralogical Record, 21, 284392.Google Scholar
Jacob, D.E. (2006) High sensitivity analysis of trace element-poor geological reference glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Geostandards and Geoanalytical Research, 30, 221235.CrossRefGoogle Scholar
Jochum, K.P. and Nohl, U. (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chemical Geology, 253, 5053.CrossRefGoogle Scholar
Johnsen, O. and Gault, R.A. (1997) Chemical variation in eudialyte. Neues Jahrbuch für Mineralogie, Abhandlungen, 171, 215237.Google Scholar
Johnsen, O. and Grice, J.D. (1999) The crystal chemistry of the eudialyte group. The Canadian Mineralogist, 37, 865891.Google Scholar
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R. and Pekov, I.V. (2003) The nomenclature of eudialyte-group minerals. The Canadian Mineralogist, 41, 785794.CrossRefGoogle Scholar
Kchit, A. (1990) Le plutonisme alcalin du Tamazeght (Haut Atlas de Midelt, Maroc). Thèse 3e cycle, Université Paul Sabatier, Toulouse, France, 302 pp.Google Scholar
Khomyakov, A.P., Korovushkin, V.V., Perfiliev, Y.D. and Cherepanov, V.M. (2010) Location, valence states, and oxidation mechanism of iron in eudialyte group minerals from Mössbauer spectroscopy. Physics and Chemistry of Minerals, 37, 543554.CrossRefGoogle Scholar
King, P.L., Hervig, R.L., Holloway, J.S., Delaney, M.D. and Dyar, M.D. (2000) Partitioning of Fe3+/Fetot between amphibole and basanitic melt as a function of oxygen fugacity. Earth and Planetary Science Letters, 178, 97112.CrossRefGoogle Scholar
Kogarko, L.N., Lazutkina, L.N. and Romanchev, B.P. (1982) The origin of eudialyte mineralization. Geochemistry International, 19, 128145.Google Scholar
Kogarko, L.N., Lahaye, Y. and Brey, G.P. (2010) Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. Mineralogy and Petrology, 98, 197208.CrossRefGoogle Scholar
Kramm, U. and Kogarko, L.N. (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia. Lithos, 32, 225242.CrossRefGoogle Scholar
Larsen, A.O. (2010) The Langesundfjord. History, Geology, Pegmatites, Minerals. Bode Verlag, Salzhemmendorf, 239 pp.Google Scholar
Larsen, L.M. and Sørensen, H. (1987) The Ilímaussaq intrusion – progressive crystallization and formation of layering in an agpaitic magma. Pp. 473488 in: Alkaline Igneous Rocks (Fitton, J.G. and Upton, B.G.J., editors). Blackwell, London.Google Scholar
Larsen, L.M. and Steenfelt, (1974) Alkali loss and retention in an iron-rich peralkaline phonolite dyke from the Garder province, South Greenland. Lithos, 7, 8190.CrossRefGoogle Scholar
Leat, P.T., Curtis, M.L., Riley, T.R. and Ferraccioli, F. (2007) Jurassic magmatism in Dronning Maud Land; results of the MAMOG project, in Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th ISAES, edited by Cooper, A.K. Raymond, C.R. et al. USGS Open-File Report, 2007-1047, Short Research Paper 033, 4 pp.CrossRefGoogle Scholar
Lurie, J. (1986) Mineralization of the Pilanesberg Alkaline complex. Pp. 22152228 in: Mineral deposits of South Africa, 2 (Anhaeusser, C.R., and Maske, S., editors). The Geological Society of South Africa, Johannesburg.Google Scholar
Lustrino, M., Dallai, L., Giordano, R., Gomes, C.B., Melluso, L., Morbidelli, L., Ruberti, E., and Tassinari, C.C.G. (2003) Geochemical and Sr-Nd-O isotopic features of the Poços de Caldas alkaline massif (Sp-Mg, SE Brazil): Relationships with the Serra do Mar analogues. Short papers – IV. South American Symposium on Isotope Geology, 593–595.Google Scholar
Markl, G., Marks, M., Schwinn, G. and Sommer, H. (2001) Phase equilibrium constraints on intensive crystallization parameters of the Ilímaussaq Complex, South Greenland. Journal of Petrology, 42, 22312258.CrossRefGoogle Scholar
Markl, G., Marks, M.A.W. and Frost, B.R. (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. Journal of Petrology, 51, 18311847.CrossRefGoogle Scholar
Marks, M. and Markl, G. (2001) Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilímaussaq intrusion, South Greenland as deduced from phase equilibria. Journal of Petrology, 42, 19471969.CrossRefGoogle Scholar
Marks, M., Vennemann, T., Siebel, W. and Markl, G. (2004a) Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the peralkaline Ilímaussaq intrusion, South Greenland. Geochimica et Cosmochimica Acta, 68, 33793395.CrossRefGoogle Scholar
Marks, M., Halama, R., Wenzel, T. and Markl, G. (2004b) Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral-melt traceelement partitioning. Chemical Geology, 211, 185215.CrossRefGoogle Scholar
Marks, M.A.W., Schilling, J., Coulson, I.M., Wenzel, T. and Markl, G. (2008a) The alkaline-peralkaline Tamazeght complex, High Atlas Mountains, Morocco: Mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. Journal of Petrology, 46, 10971131.CrossRefGoogle Scholar
Marks, M.A.W., Coulson, I.M., Schilling, J., Jacob, D.E., Schmitt, A.K. and Markl, G. (2008b) The effect of titanite and other HFSE-rich mineral (Tibearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chemical Geology, 257, 153172.CrossRefGoogle Scholar
Marks, M.A.W., Hettmann, K., Schilling, J., Frost, B.R. and Markl, G. (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52, 439455.CrossRefGoogle Scholar
Marr, R.A. and Wood, S.A. (1992) Peliminary petrogenetic grids for sodium and calcium zirconosilicate minerals in felsic peralkaline rocks: The SiO2–Na2ZrO3 and SiO2–CaZrO3 pseudobinary systems. American Mineralogist, 77, 810820.Google Scholar
Mitchell, R.H. and Liferovich, R.P. (2006) Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos, 91, 352372.CrossRefGoogle Scholar
Olivo, G.R. and Williams-Jones, A.E. (1999) Hydrothermal REE-rich eudialyte from the Pilanesberg complex, South Africa. The Canadian Mineralogist, 37, 653663.Google Scholar
Palme, H., and O’Neill, H.S.C. (2004) Cosmochemical estimates on mantle composition. Pp. 138 in: Treatise on Geochemistry 2 (Carlson, R.W., editor). Elsevier, Amsterdam.Google Scholar
Pekov, I.V. and Agakhanov, A.A. (2008) Thallium-rich murunskite from the Lovozero pluton, Kola Peninsula, and partitioning of alkali metals and thallium between sulfide minerals. Geology of Ore Deposits, 50, 583589.CrossRefGoogle Scholar
Pfaff, K., Krumrei, T., Marks, M., Wenzel, T., Rudolf, T. and Markl, G. (2008) Chemical and physical evolution of the lower layered sequence from the syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos, 106, 280296.CrossRefGoogle Scholar
Pfaff, K., Wenzel, T., Schilling, J., Marks, M. and Markl, G. (2010) A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrbuch für Mineralogie, Abhandlungen, 187, 6981.CrossRefGoogle Scholar
Pol’shin, E.V., Platonov, A.N., Borutzky, B.E., Taran, M.N. and Rastsvetaeva, R.K. (1991) Optical and Mössbauer study of minerals of the eudialyte group. Physics and Chemistry of Minerals, 18, 117125.CrossRefGoogle Scholar
Rastsvetaeva, R.K. (2007) Structural mineralogy of the eudialyte group: A review. Crystallography Reports, 52, 4764.CrossRefGoogle Scholar
Roedder, E. and Coombs, D.S. (1967) Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island. Journal of Petrology, 8, 417451.CrossRefGoogle Scholar
Ryabchikov, I.D. and Kogarko, L.N. (2006) Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos, 91, 3545.CrossRefGoogle Scholar
Schilling, J., Marks, M., Wenzel, T. and Markl, G. (2009) Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: A case study from Tamazeght, Morocco. The Canadian Mineralogist, 47, 351365.CrossRefGoogle Scholar
Schilling, J., Frost, B.R., Marks, M.A.W., Wenzel, T. and Markl, G. (2011) Fe-Ti oxide-silicate (QUIlFtype) equilibriain feldspathoid-bearing systems. American Mineralogist, 96, 100110.CrossRefGoogle Scholar
Schollenbruch, K. (2007) Spätmagmatische Eudialytführende Alkalifeldspat-syenite innerhalb der Kakortokit-Sequenz der Ilímaussaq-Intrusion, Südgrönland. Diplomathesis, Universität Tübingen, Germany, 138 pp.Google Scholar
Schönenberger, J. and Markl, G. (2008) The magmatic and fluid evolution of the Motzfeldt Intrusion in South Greenland: Insights into the formation of agpaitic and miaskitic rocks. Journal of Petrology, 49, 15491577.CrossRefGoogle Scholar
Schorscher, H.D. and Shea, M.E. (1992) The regional geology of the Poços de Caldas alkaline complex: Mineralogy and geochemistry of selected nepheline syenites and phonolites. Journal of Geochemical Exploration, 45, 2551.CrossRefGoogle Scholar
Shand, S.I. (1928) The geology of Pilansberg in the Western Transvaal. Geological Society of South Afica. Transactions, 31, 91156.Google Scholar
Sørensen, H. (1974) Kolapeninsula. Pp. 206221 in: The Alkaline Rocks (Sorensen, H., editor). Wiley, London.Google Scholar
Sørensen, H. (1992) Agpaitic nepheline syenites: A potential source of rare minerals. Applied Geochemistry, 7, 417427.CrossRefGoogle Scholar
Sørensen, H. (1997) The agpaitic rocks – an overview. Mineralogical Magazine, 61, 485498.CrossRefGoogle Scholar
Stromeyer, F. (1819) Summary of meeting 16 December 1819. Göttingische gelehrte Anzeigen, 3, 19932000.Google Scholar
Törnebohm, A.E. (1906) Katapleit-syenit. Sveriges Geologiska Undersökning, Ser. C., 199, 154.Google Scholar
Ussing, N.V. (1912) Geology of the country around Julianehaab, Greenland. Meddelelser om Grønland, 38, 376 pp.Google Scholar
Wight, Q. and Chao, G. (1995) Mont Saint-Hilaire Revisited Part 2. Rocks and Minerals, 70, 90103. 131–138.CrossRefGoogle Scholar
Wu, F.-Y., Yang, Y.-H., Marks, M.A.W., Liu, Z.-C., Zhou, Q., Ge, W.-C., Yang, J.-S., Zhao, Z.-S., Mitchell, R.H. and Markl, G. (2010) In situ U-Pb, Nd and Hf isotopic analysis of eudialyte by LA-(MC)- ICP-MS. Chemical Geology, 273, 834.CrossRefGoogle Scholar
Supplementary material: File

Schilling et al. supplementary material

Electronic supplement

Download Schilling et al. supplementary material(File)
File 1.2 MB