Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T06:45:56.389Z Has data issue: false hasContentIssue false

Crystal chemistry of aegirine as an indicator of P-T conditions

Published online by Cambridge University Press:  05 July 2018

L. Secco*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Corso Garibaldi 37, I-35137, Padova, Italy
A. Guastoni
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Corso Garibaldi 37, I-35137, Padova, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Corso Garibaldi 37, I-35137, Padova, Italy
G. J. Redhammer
Affiliation:
Department of Materials Engineering and Physics, Division of Mineralogy, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
A. Dal Negro
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Corso Garibaldi 37, I-35137, Padova, Italy

Abstract

One metamorphic and four magmatic aegirines, together with two end-member aegirines synthesized at atmospheric pressure and different temperatures, were investigated by single-crystal X-ray diffraction. The limited compositional differences allow the polyhedral volumes to be almost constant in all the aegirines investigated( VM1 ≈ 11.0 Å3; VM2 ≈ 26.3 Å3; VT ≈ 2.21 Å3). However, differences in polyhedral distortions are responsible for the cell-volume variations, reflected mainly in the change of a and β cell parameters. Cell volume is only partly related to the composition of these aegirines: with increasing formation temperature, an increase in the unit-cell volume of ~1.2 Å3 is observed, while a significant contraction of the cell volume occurs during high-pressure formation. As the difference in cell volume between the two synthetic aegirines is ascribed to the different conditions of synthesis temperature, the same interpretation could be adopted for the differences observed in natural aegirines.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burnham, C.W., Clark, J.R., Papike, J.J. and Prewitt, C.T. (1967) A proposed crystallographic nomenclature for clinopyroxene structure. Zeitschrift für Kristallografie, 125, 109–119.Google Scholar
Dal Negro, A., Carbonin, S., Molin, G., Cundari, A. and Piccirillo, E.M. (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional andalkaline basaltic rocks Pp. 117–150 in: Advances in Physical Geochemistry (Saxena, S.K., editor). 2, Springer-Verlag, New York.Google Scholar
Eby, G.N., Roden-Tice, M., Krueger, H.L., Ewing, W., Faxon, E.H. and Woolley, A.R. (1995) Geochronology andcooling history of the northern part of the Chilwa alkaline province, Malawi. Journal of African Earth Sciences, 20, 275–288.CrossRefGoogle Scholar
Grapes, R. (1991) Aluminous alkali feldspar-bearing xenoliths andthe origin of sanidinite, East Eifel, Germany. Neues Jahrbuch für Mineralogie Monatshefte, 3, 129–144.Google Scholar
Guastoni, A. and Pezzota, F. (2007) REE-mineral phases replacing helvite, niobian-rutile, bastnasite-(Ce) from alkaline pegmatites of Mount Malosa, Zomba District, Malawi. Granitic Pegmatitites: the State of the Art. Memorias 8, 42–43, Porto, Portugal.Google Scholar
Guastoni, A., Pezzotta, F. and Demartin, F. (2003) Le pegmatiti di Zomba-Malosa. Rivista Mineralogica Italiana, 27, 66–77.Google Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, vol. IV, Kynoch, Birmingham, U.K. Google Scholar
Irifune, T., Ringwood, A.E. and Hibberson, W.O. (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 126, 351–368.CrossRefGoogle Scholar
Koch-Müller, M., Matsyuk, S.S. and Wirth, R. (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. American Mineralogist, 89, 921–931.CrossRefGoogle Scholar
Liu, L. (1978) High-pressure phase transformation of albite, jadeite and nepheline. Earth and Planetary Science Letters, 37, 438–444.CrossRefGoogle Scholar
Martin, R.F. and De Vito, C. (2005) The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist, 43, 2027–2048.CrossRefGoogle Scholar
Nestola, F., Boffa Ballaran, T., Liebske, C., Bruno, M. andTribaud ino, M. (2006) High-pressure behaviour along the jadeite NaAlSi2O6 – aegirine NaFeSi2O6 solidsolution up to 10 GPa. Physics and Chemistry of Minerals, 33, 417–425.CrossRefGoogle Scholar
Nestola, F., Tribaudino, M., Boffa Ballaran, T., Liebske, C. and Bruno, M. (2007) The crystal structure of pyroxenes along the jadeite-hedenbergite and jadeite- aegirine joins. American Mineralogist, 92, 1492–1501.CrossRefGoogle Scholar
Redhammer, G.J., Amthauer, G., Roth, G., Tippelt, G. and Lottermoser, W. (2006) Single crystal X-ray diffraction and temperature dependent 57Fe Mössbauer spectroscopy on the hedenbergite-aegirine (Ca,Na)(Fe2+,Fe3++)Si2O6 solidsoluti on. American Mineralogist, 91, 1271–1292.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.CrossRefGoogle Scholar
Saccardo, D. and Zordan, A. (2002) Il giacimento metamorfico di contatto di Maglio-Pornaro al Tretto d i Schio. Rivista Mineralogica Italiana, 26, 4, 234–236.Google Scholar
Sheldrick, G.M. (1997) SHELX, Programs for Crystal Structure Analysis. Göttingen, Germany.Google Scholar
Stoe and Cie (1999) Crystal Optimisation for Numerical Absorption Correction. Stoe and Cie GmbH, Darmstad, Germany.Google Scholar
Stoe and Cie (2001) Data Reduction Program. Stoe and Cie GmbH, Darmstad, Germany.Google Scholar
Tutti, F., Dubrovinsky, L. and Saxena, S.K. (2000) High pressure phase transformation of jadeite and stability of NaAlSiO4 with calcium-ferrite type structure in the lower mantle conditions. Geophysical Research Letters, 27, 2025–2028.CrossRefGoogle Scholar
Woolley, A.R. (1987) Lithosphere metasomatism and the petrogenesis of the Chilwa Province of alkaline igneous rocks andcarbonatites, Malawi. Journal of African Earth Sciences, 6, 891–898.Google Scholar
Wörner, G. and Schmincke, H.U. (1984) Petrogenesis of the zonedLaacher See tephra. Journal of Petrology, 25, 836–851.CrossRefGoogle Scholar
Wörner, G., Schmincke, H.U. and Schreyer, W. (1982) Crustal xenoliths from the Quaternary Wehr volcano (East Eifel). Neues Jahrbuch für Mineralogie Abhandlungen, 144, 29–55.CrossRefGoogle Scholar