Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T14:53:21.681Z Has data issue: false hasContentIssue false

Crystal structure and revised chemical formula for burckhardtite, Pb2(Fe3+Te6+)[AlSi3O8]O6: a double-sheet silicate with intercalated phyllotellurate layers

Published online by Cambridge University Press:  05 July 2018

Andrew G. Christy*
Affiliation:
Centre for Advanced Microscopy, Australian National University, Canberra, ACT 0200, Australia
Anthony R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Stuart J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
Robert M. Housley
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

The crystal structure of burckhardite from the type locality, Moctezuma, Sonora, Mexico, has been refined to R1 = 0.0362 and wR2 = 0.0370 for 215 reflections with I > 2σ(I). Burckhardtite is trigonal, space group P1m, with the unit-cell parameters a = 5.2566(5) Å , c = 13.0221(10) Å , V = 311.62(5) Å3 and Z = 1 for the ideal formula unit Pb2(Fe3+Te6+)[AlSi3O8]O6. There is no long-range order of (Fe3+, Te6+) or (Al3+, Si4+). New microprobe data were used to estimate site scattering factors, and Raman spectroscopic data showed no evidence of O–H stretching bands. Burckhardtite is not closely related to the micas, as supposed previously, but is a double-sheet silicate in which the aluminosilicate anion resembles that of minerals such as cymrite and kampfite. The [(Fe3+Te6+)O6]3– part of the structure is not bonded directly to the aluminosilicate layer, but forms a discrete anionic phyllotellurate layer that alternates with the [AlSi3O8] double sheets. Similar phyllotellurate layers are known from several synthetic phases. In burckhardtite, Pb2+ cations intercalate between phyllosilicate and phyllotellurate layers, forming a Pb2[FeTeO6] module that is topologically similar to a slab of the structure of rosiaite, Pb[Sb2O6]. The crystal symmetry, structure, classification as a double-sheet silicate and chemical formula, including the determination of the 6+ valence of Te and absence of essential H2O, are all new findings for the mineral.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basciano, L.C. and Groat, L.A. (2007) The crystal structure of kampfite. The Canadian Mineralogist, 45, 935943.CrossRefGoogle Scholar
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1996) Rosiaite, PbSb2O6, a new mineral from the Cetine mine, Siena, Italy. European Journal of Mineralogy, 8, 487492.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brunton, G. (1973) Li2ZrF6. Acta Crystallographica, B29, 22942296.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Chesnokov, B.V., Lotova, E.V., Nigmatulina, E.N., Pavlyuchenko, V.S. and Bushmakin, A.F. (1990) Dmisteinbergite CaAl2Si2O8 (hexagonal) – a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 119, 4346. [in Russian].Google Scholar
Christy, A.G. and Mills, S.J. (2013) Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to TeIVO6 octahedra. Acta Crystallographica, B69, 446456.Google Scholar
Drits, V.A., Kashaev, A.A. and Sokolova, G.V. (1975) Crystal-structure of cymrite. Kristallografiya, 20, 280286. [in Russian].Google Scholar
Fasshauer, D.W., Chatterjee, N.D. and Marler, B. (1997) Synthesis, structure, thermodynamic properties, and stability relations of K-cymrite, K[AlSi3O8]·H2O. Physics and Chemistry of Minerals, 24, 455462.CrossRefGoogle Scholar
Fintor, K., Walter, H. and Nagy, Sz. (2013) Petrographic and micro-Raman analysis of chondrules and (Ca,Al)-rich inclusions of NWA 2086 CV3 type carbonaceous chondrite. Lunar and Planetary Science, 44, 1152.Google Scholar
Gaines, R.V., Leavens, P.B. and Nelen, J.A. (1979) Burckhardtite, a new silicate-tellurite from Mexico. American Mineralogist, 64, 355358.Google Scholar
Génin, J.-M.R., Mills, S.J., Christy, A.G., Guérin, O., Herbillon, A.J., Kuzmann, E., Ona-Nguema, G., Ruby, C. and Upadhyay, C. (2014) Mössbauerite, Fe3+ 6 O4(OH)8[CO3]·3H2O, the fully oxidized ‘green rust’ mineral from Mont Saint-Michel Bay, France. Mineralogical Magazine, 78, 447465.CrossRefGoogle Scholar
Graham, C.M., Tareen, J.A.K., McMillan, P.F. and Lowe, B.M. (1992) An experimental and thermodynamic study of cymrite and celsian stability in the system BaO–Al2O3–SiO2–H2O. European Journal of Mineralogy, 4, 251269.CrossRefGoogle Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Liou, J.G., Sobolev, N.V., Zhang, R.-Y., Shatsky, V.S. and Zayachkovsky, A.A. (2004) Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contributions to Mineralogy and Petrology, 148, 380389.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, Vol. IV. Kynock, Dordrecht, The Netherlands, 366 pp.Google Scholar
Kampf, A.R., Housley, R.M., Mills, S.J., Marty, J. and Thorne, B. (2010) Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral with chains of tellurate octahedra. American Mineralogist, 95, 13291336.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013a) Leadtellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, Pb2Cu2+ 4 Te6+ 2 O10(OH)2 (SO4)(H2O), a new mineral with thick HCP layers. American Mineralogist, 98, 13151321.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013b) Leadtellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, (Ca,Pb)Cu2+Te6+O5 (H2O), a new mineral with HCP stair-step layers. American Mineralogist, 98, 16171623.CrossRefGoogle Scholar
Kanzaki, M., Xue, X., Amalberti, J. and Zhang, Q. (2012) Raman and NMR spectroscopic investigation of high-pressure K-cymrite (KAlSi3O8·H2O) and its anhydrous form (kokchetavite). Journal of Mineralogical and Petrological Sciences, 107, 114119.CrossRefGoogle Scholar
Kasper, H.M. (1969) LnCrTeO6 – a new series of compounds based on the PbSb2O6 structure. Materials Research Bulletin, 4, 3337.CrossRefGoogle Scholar
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitshcrift für Kristallographie, 216, 245247.Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates: Structure, Bonding and Classification. Springer- Verlag, New York, 347 pp.CrossRefGoogle Scholar
Magnéli, A. (1941) The crystal structure of lead metaantimonate and isomorphous compounds. Arkiv för Kemi, Mineralogi och Geologi, B15, 16.Google Scholar
Mills, S.J., Bindi, L., Cadoni, M., Kampf, A.R., Ciriotti, M.E. and Ferraris, G. (2012a) Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,&)18O38, a new member of the crichtonite group. European Journal of Mineralogy, 24, 10611067.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Kameda, T., Génin, J.-M.R. and Colombo, F. (2012b) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.CrossRefGoogle Scholar
Mills, S.J. and Christy, A.G. (2013) Revised values of the bond valence parameters for TeIV–O, TeVI–O and TeIV–Cl. Acta Crystallographica, B69, 145149.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Christy, A.G., Housley, R.M., Rossman, G.R., Reynolds, R.E. and Marty, J. (2014) Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA. Mineralogical Magazine, 78, 13251340.CrossRefGoogle Scholar
Phatak, R., Krishnan, K., Kulkarni, N.K., Achary, S.N., Banerjee, A. and Sali, S.K. (2010) Crystal structure, magnetic and thermal properties of LaFeTeO6. Materials Research Bulletin, 45, 19781983.CrossRefGoogle Scholar
Rinaldi, R., Sacerdoti, M. and Passaglia, E. (1990) Strätlingite: crystal structure, chemistry, and a reexamination of its polytype vertumnite. European Journal of Mineralogy, 2, 841849.CrossRefGoogle Scholar
Sacerdoti, M. and Passaglia, E. (1988) Hydrocalumite from Latium, Italy – its crystal structure and relationship with related synthetic phases. Neues Jahrbuch für Mineralogie Monatshefte, 1988, 462475.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Takéuchi, Y. and Donnay, G. (1959) The crystal structure of hexagonal CaAl2Si2O8. Acta Crystallographica, 12, 465470.CrossRefGoogle Scholar
Walstrom, R.E. (2012) "The Accidental Pocket, Cochise County, Arizona". Northern California Mineralogical Society Annual Meeting, 2012. Cited in http:// www.mindat.org/min-804.html. Accessed on 18 June 2014.Google Scholar
Woodward, P.M., Sleight, A.W., Du, L.-S. and Grey, C.P. (1999) Structural studies and order-disorder phenomenon in a series of new quaternary tellurates of the type A2+M4+Te6+O6 and A1+ 2 M4+Te6+O6 . Journal of Solid State Chemistry, 147, 99116.CrossRefGoogle Scholar
Wulff, L. and Müller-Buschbaum, H. (1998) Isolierte trigonale SrO6–Prismen verknüpfen Kagomé-Netze im Strontium-Manganat(IV)-Tellurat(VI): SrMnTeO6. Zeitschrift für Naturforschung B. A Journal in Chemical Sciences, 53, 283286.CrossRefGoogle Scholar
Yin, Y.B. and Keszler, D.A. (1992) Crystal-chemistry of colquiriite-type fluorides. Chemistry of Materials, 4, 645648.CrossRefGoogle Scholar
Zhang, R.Y., Liou, J.G., Iizuka, Y. and Yang, J.S. (2009) First record of K-cymrite in North Qaidam UHP eclogite, Western China. American Mineralogist, 94, 222228.CrossRefGoogle Scholar