Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T23:00:56.280Z Has data issue: false hasContentIssue false

Deformation and recrystallization of pyrite

Published online by Cambridge University Press:  05 July 2018

K. R. McClay
Affiliation:
Geology Department, University of London, Goldsmiths' College, Rachel McMillan Building, Creek Road, Deptford, London SE8 3BU
P. G. Ellis
Affiliation:
Geology Department, University of London, Goldsmiths' College, Rachel McMillan Building, Creek Road, Deptford, London SE8 3BU

Abstract

A detailed study of pyrite in a number of metamorphosed, stratiform, sediment-hosted Pb-Zn deposits has shown the importance of cataclastic deformation, pressure-solution, and grain growth in the deformation and textural development of pyrite. Primary depositional or early diagenetic microstructures are preserved in pyritic ores deformed or metamorphosed at grades up to mid-upper greenschist facies, whereas at higher temperatures only metablastic or annealed pyrite textures are found. Brittle deformation is found at all metamorphic grades and is favoured by coarse grain-sizes. Pressure-solution is a major deformation mechanism in fine-grained pyritic ores in low-grade metamorphic environments. Grain growth and annealing dominate at higher metamorphic temperatures and are likely to have obliterated any evidence of deformation by dislocation processes. Significant macroscopic ductility of fine-grained pyritic ores in low-grade environments may be accounted for by a combination of pressure-solution, grain boundary sliding, and cataclastic flow.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, F. D. (1910) J. Geol. 35, 489535.CrossRefGoogle Scholar
Arnold, M. (1978) Unpub. Theses Doctorales-Sciences. Nancy.Google Scholar
Ashby, M. F., and Verrall, R. A. (1973) Ada. Metall. 21, 149–63.CrossRefGoogle Scholar
Atkinson, B. K. (1972) Unpub. Ph.D. thesis, University of London. 252 pp.Google Scholar
Atkinson, B. K. (1975) Econ. Geol. 70, 473–87.CrossRefGoogle Scholar
Atkinson, B. K. (1977) Geol. Woven. Stockh. Fork 99, 186–97.CrossRefGoogle Scholar
Barnes, H. L., and Czamanske, G. K. (1967) In Geochemistry of Hydrothermal Ore Deposits (Barnes, H. L., ed.) Rinehart and Winston, New York, 334–81.Google Scholar
Bridgman, P. W. (1937) Proc. Am. Acad. Arts. Sci. 71, 387460.CrossRefGoogle Scholar
Buerger, M. J. (1928) Am. Mineral. 13, 3551.Google Scholar
Campbell, F. A., and Ethier, V. G. (1974). Econ. Geol. 69, 482–93.CrossRefGoogle Scholar
Couderc, J.-J., Bras, J., Fagot, M., and Levade, C. (1980) Bull. Mineral. 103, 547–57.Google Scholar
Cox, S. F., Etheridge, M. A., and Hobbs, B. E. (1981) Econ. Geol. 76, 2105–18.CrossRefGoogle Scholar
Davis, G. H. (1972) Ibid. 67, 634–55.Google Scholar
Frost, H. S., and Ashby, M. F. (1982) Deformation mechanism maps. The plasticity and creep of metals and ceramics. Pergamon, Oxford. 166 pp.Google Scholar
Fyles, J. T. (1970) British Columbia Department of Mines and Petroleum Resources. Bull. 57, 64 pp.Google Scholar
Fyles, J. T. and Hewlett, C. G. (1959) British Columbia Department of Mines Bull. 41, 162 pp.Google Scholar
Gay, N. C. (1970) J. Geol. 78, 523–32.CrossRefGoogle Scholar
Graf, J. L. Jr, and Skinner, B. J. (1970) Econ. Geol. 65, 206–15.CrossRefGoogle Scholar
Bras, J., Fagot, M., Levade, G. and Courderc, J.-J. (1981) Ibid. 76, 738–44.Google Scholar
Hamilton, J. M., Bishop, D. T., Morris, H. C. and Owens, O. E. (1982) In H. S. Robinson Memorial Volume (Hutchinson, R. W., ed.). Geol. Assoc. Can. Special Paper 25, 597665.Google Scholar
Delaney, G. D., Hauser, R. L., and Ransom, P. W. (1983) In Sediment-Hosted Stratiform Lead-Zinc Deposits. Short Course Notes. Mineral. Assoc. Can. 3172.Google Scholar
Höy, T. (1982) In H. S. Robinson Memorial Volume (Hutchinson, R. W., ed.) Geol. Assoc. Can. Special Paper 25, 127–47.Google Scholar
Jefferson, C. W., Kilby, D. B., Pigage, L. C. and Roberts W. J. (1983) In Sediment-Hosted Stratiform Lead-zinc Deposits. Short Course Notes. Mineral. Assoc. Can. 121–39.Google Scholar
Lang, H. (1968) Unpub. Dissertation, Rheinisch- Westfalisch Technische Hochschule, Aachen. 131 pp.Google Scholar
Large, D. E. (1980) Geol Jahrb. 40, 59130.Google Scholar
Lawrence, L. J. (1972) Econ. Geol. 67, 487–96.CrossRefGoogle Scholar
Levade, C. Couderc, J.-J., Bras, J., and Fagot, M. (1979) Phil. Mag., A40, 111–20.CrossRefGoogle Scholar
McClay, K. R. (1977) J. Geol. Soc. Lond. 134, 5770.CrossRefGoogle Scholar
McClay, K. R. (1978) Unpub. Ph.D. thesis, University of London. 454 pp.Google Scholar
McClay, K. R. (1979) Trans. Inst. Mining Metall. 88, B5-B14.Google Scholar
McClay, K. R. (1982) In Atlas of Deformational and Metamorphic Rock Fabrics (Borradaile, G. J., Bayly, M. B., and Powell, C. McA., eds.). Springer-Verlag, Berlin. 374–83.Google Scholar
McClay, K. R. (1983) In Sediment-Hosted Stratiform Lead-Zinc Deposits. Short Course Notes. Mineral. Assoc. Can. 283307.Google Scholar
Maclntyre, D. (1979) Geological Fieldwork 1979. British Columbia Ministry of Energy, Mines and Petroleum Res., 5667.Google Scholar
Masalovich, A. M. (1977) Internat. Geol. Rev. 19, 208–16.CrossRefGoogle Scholar
Mathias, B. V., and Clarke, G. J. (1975) In Economic Geology of Australia and Papua-New Guinea. 1, Metals. (Knight, C. L. ed.) Austral. Inst. Mining Metall. 351–72.Google Scholar
Mookherjee, A. (1971) Econ. Geol. 66, 200.CrossRefGoogle Scholar
Mookherjee, A. (1976) In Handbook of Stratabound and Stratiform Ore Deposits (Wolf, K. H., ed.) Elsevier, Amsterdam. 4, 203–60.Google Scholar
Natale, P. (1971) Rend. Soc. Italian Miner. Petrol. 27, 539–50.Google Scholar
Newhouse, W. H., and Flaherty, G. F. (1930) Econ. Geol. 25, 600–4.CrossRefGoogle Scholar
Nicholas, A., and Poirier, J. P. (1976) Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. Wiley, London. 444 pp.Google Scholar
Raj, R., and Ashby, M. F. (1971) Met. Trans. 2, 1113–27.CrossRefGoogle Scholar
Ramdohr, P. (1969) The Ore Minerals and Their Intergrowths. Pergamon, Oxford. 1174 pp.Google Scholar
Robertson, E. C. (1955) Geol. Soc. Am. Bull. 66,1275–314.CrossRefGoogle Scholar
Rozendaal, A. (1978) In Mineralisation in Metamorphic Terranes (Voerwoerd, W. J., ed.), Geol. Soc. S. Africa Spec. Publ. 4, 235–68.Google Scholar
Sarkar, S. C. Bhattacharyya, P. K., and Mukherjee, A. D. (1980) Econ. Geol. 75, 1152–67.CrossRefGoogle Scholar
Selkman, S. O. (1983) J. Structural Geology 5, 4752.CrossRefGoogle Scholar
Selkman, S. O. (1971) Mineral. Deposita, 6, 122–9.Google Scholar
Templeman-Kluit, D. J. (1970) Can. J. Earth Sci. 7, 1339–45.CrossRefGoogle Scholar
van Goethem, L., van Landuyt, J., and Amelinckx, S. (1978) Am. Mineral. 63, 548–50.Google Scholar
Vokes, F. M. (1969) Earth Sci. Rev. 5, 99143.CrossRefGoogle Scholar
Vokes, F. M. (1971) Mineral. Deposita, 6, 122–9.CrossRefGoogle Scholar
Vokes, F. M. (1976) In Handbook of Stratabound and Stratiform Ore Deposits (Wolf, K. H., ed.). Elsevier, Amsterdam. 6, 79127.Google Scholar