Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T06:52:02.701Z Has data issue: false hasContentIssue false

The determination of ferrous and ferric iron in rocks and minerals; and a note on sulphosalicylic acid as a reagent for Fe and Ti

Published online by Cambridge University Press:  05 July 2018

M. H. Hey*
Affiliation:
British Museum (Natural History), Cromwell Road, London SW7

Synopsis

Instrumental methods of chemical analysis, including electron and ion-probes, X-ray fluorescence, atomic absorption, and plasma-source spectrometry, have largely replaced classical wet-chemical analysis except for ‘referee’ analyses, but have not so far proved able to determine the net state of oxidation of a rock or mineral with reasonable accuracy. Mössbauer spectroscopy can indeed give fairly accurate Fe2+ and Fe3+ estimates in favourable circumstances, but fails when the Fe2+: Fe3+ ratio is very small or very large or when the iron is present in several different lattice positions with different surroundings; and it cannot arrive at the net state of oxidation when other elements of variable valency are present. The term ‘net state of oxidation’ calls for some comment, and is dealt with in the full paper; for the moment we note as an example that Mössbauer spectroscopy shows that much of the iron in ludlockite is ferric, whereas a ‘ferrous iron’ determination corresponds to an arsenate of lead and ferrous iron, from which it follows that part of the arsenic must be trivalent, a result that could not have been arrived at from either the ‘ferrous iron’ or the Mössbauer data along. Thus in the present state of the art a wet-chemical method for net state of oxidation is a necessity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Hey, M. H. (1974) Mineral. Mag. 39, 895–8.Google Scholar

References

1889 Rose, H., Handb.anal.Chem. 199 and 207Google Scholar
1850 Berzelius, B. J., Ann.Chem.Phys. (Poggendorff), 20, 541.Google Scholar
1851 Döbereiner, J. W., J. Chem.Phys. (Schweigger), 62, 94.Google Scholar
1859 Fuchs, J. N., J. Chem.Phys. (Schweigger), 62, 184.Google Scholar
1851 Von Liebig, J., Ann.Chim.Phys., ser.2,) 2, 48, 290.Google Scholar
1831 Fuchs, J. N., J. prakt.Chem., 12, 140.Google Scholar
1846 Margueritte, F., An.Chim.Phys., ser.3., 18, 244.Google Scholar
1849 Normandy, A, Pract.Treat.(Chem.Anal. (trans. of H. Rose, Handb.anal.Chem., 4th edn), 2, ll. fn.Google Scholar
1850 Penny, P., Chem.Gazette, 8, 330.Google Scholar
1851 Schabus, J., Sitzungsber.Akad.Wiss.Wien, 6, 596.Google Scholar
1860 Hitscherlich, A., J. prakt.Chem. 81, 116.Google Scholar
1861 Lange, L.Th., J. prakt.Chem. 82, 129.CrossRefGoogle Scholar
1867 Cooke, J. p., Am.J.Sci., ser.2, 44, 347.CrossRefGoogle Scholar
1871 Rose, H., Handb.anal.Chem., 6th edn, 2, 120.51.Google Scholar
1894 Pratt, J. H., Am.J.Sci., ser.3, 48, 149.CrossRefGoogle Scholar
1898 Peters, R., Z.physikal.Chem. 26, 193.Google Scholar
1899 Vogt, J.H. L.. Z.prakt.Geol. 250.Google Scholar
1900 Hillebrand, W. F. and Stokes, H. N., J.Am.Chem.Soc. 22, 625. Z.anorg.Chem. 25, 326.CrossRefGoogle Scholar
1900 Classen, A., Handb.quantichem.Anal., 5th edn, 2, 193.Google Scholar
1501 Stokes, H. N., U.S. Geol.Surv.Bull. 186; Am.J.Sci., ser.4, 12, 414.Google Scholar
1903 Knecht, R., Ber.deut.chem.Ges. 36, 166.CrossRefGoogle Scholar
1907 Mauzelius, R., Sver.Geol.Undersok., Arsbok I, no.3.Google Scholar
1907 Hillebrand, W. R., U.S. Geol.Surv.Bull. 305, 22.Google Scholar
1908 Hillebrand, W. F., J.Am.Chem. 30, 1120.CrossRefGoogle Scholar
1910 Muller, R. and Koppe, P., Z.anorg.Chem. 68, 160.CrossRefGoogle Scholar
1910 Erdmenn, E., [Kali, 4, 73. cited by J.W. Mellor, Compr.Treat.Inorg. Theor.Chem. 14, 21 (1935).Google Scholar
1913 Hildebrand, J. H., J.Am.Chem.Soc. 35, 871.Google Scholar
1913 Treadwell, F. P., Kurzes Lehrb .ana1. Chem., 6th edn, 2, 425.Google Scholar
1919 Barneby, O. L., J.Am.Chem.Soc. 37, 1481.CrossRefGoogle Scholar
1921 Thornton, W. M. and Chapman, J.E., J.Am.Chem.Soc. 43, 91.CrossRefGoogle Scholar
1924 Knop, d., J.Am.Chem.Soc. 46, 263.CrossRefGoogle Scholar
1927 Sarver, L. A., J.Am.Chem.Soc. 49, 1472.CrossRefGoogle Scholar
1928 Heisig, G. B., J.Am.Chem.Soc. 50, 1687.CrossRefGoogle Scholar
1928 Soule, B. A., J.Am.Chem.Soc. 50, 1961.CrossRefGoogle Scholar
1929 Hillebrand, W. F. and Lundell, G.E.F., Applied inorganic analysis, 769-86.Google Scholar
1933 Alten, P., Weiland, H. and Hille, E., 2.anorg.Chem. 215, 81.CrossRefGoogle Scholar
1934 Rowledge, H. P., J.R.Soc.Western Australia, 20, 165.Google Scholar
1935 Thiel, A. and Peter, O., Z.anal.Chem. 103, 161.CrossRefGoogle Scholar
1941 Hey, M. H., Mineral. Mag. 26, 116.Google Scholar
1951 MacCardle, L. E. and Scheffer, E.R., Anal.Chem. 23, 1169.CrossRefGoogle Scholar
1985 Hillebrand, W. R. and Lundell, G.E. F., Applied inorganic analysis. 2nd edn, 907-22.Google Scholar
1953 Talvitie, N. A., [Anal.(chem. 25, 604], cited by Sandell, E. B.. Colorim.Determ.Traces Elem., 3rd edn, 1959, 925.Google Scholar
1955 Harvey, A. E., jr., Smart, J. E., and Aims, E.S., Anal.Chem. 27, 26.CrossRefGoogle Scholar
1958 Wilson, A. D., Bull.Geol.Surv. G.B. 9, 96.Google Scholar
1998 Riley, J. P. and Williams, H. D., NikroChim.Acta, 4, 516.Google Scholar
1951 Clemency, C. V. and Hagner, A.F., Anal.Chem. 33, 888.CrossRefGoogle Scholar
1992 Reichen, L. E. and Fahey, J. J., U.S. Geol.Surv.Bull. 1144B.Google Scholar
1965 Davis, R. J., Hey, M. H., and Kingsbury, A.W. G., Mineral.Mag. 35, 79.Google Scholar
1967 Kiss, E., Anal.Chim.Acta, 39, 223.CrossRefGoogle Scholar
1975 Hey, M. H., Mineral.Mag. 39, 4.CrossRefGoogle Scholar
1974 Hey, M. H., Mineral.Mag. 39, 895.CrossRefGoogle Scholar
1975 Fadrus, H. and Maly, J., Chem.Soc., Exp.Synops.J.Mark II, 3.Google Scholar

A correction has been issued for this article: