Published online by Cambridge University Press: 25 July 2019
We present here new data on the low-sulfide mineralisation in the upper endocontact of the Noril'sk 1 intrusion. Twenty four mineral species of platinum-group elements and their solid solutions, as well as numerous unnamed phases, including an Sb analogue of vincentite, As and Sn analogues of mertieite-I and a Sn analogue of mertieite-II have been found. It is shown that the features of the mineral association: (1) the atypical trend of TiO2 and Fe2+ in chromian spinel; (2) the composition of the Pt–Fe alloys with a Fe/Fe + Pt range of 0.26–0.37 (logfO2 ≈ – (9–10); and (3) crystallisation of high-temperature sperrylite from silicate melt (at >800°C and logfS2 < –10.5), which is possible under fO2 of FMQ to FMQ-2 in mafic magma, are due to the reducing conditions of their formation and evolution. Droplet-like inclusions of silicate-oxide minerals in сhromian spinels and sulfides in platinum-group minerals are interpreted to be trapped droplets of co-existing sulfide melt. The captured sulfide melt has evolved in the direction of increasing the fugacity of sulfur: troilite + pentlandite (Fe>Ni) – in sperrylite (paragenesis I) to monoclinic pyrrhotite + pentlandite (Ni≈Fe) + chalcopyrite – in Pt–Fe alloys (paragenesis II). Paragenesis from the sulfide aggregates in the silicate matrix are more fractionated: pyrrhotite + pyrrhotite (Ni>Fe) + chalcopyrite (III) and pyrite + pentlandite (Ni>>Fe) + millerite (IV). Pd arsenides and antimonides crystallised later than sperrylite and isoferroplatinum, as a result of the evolution of a sulfide melt with an increased activity of the element ligands (Te, Sn, Sb and As).
Associate Editor: Brian O'Driscoll
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.