Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:36:45.988Z Has data issue: false hasContentIssue false

A fluid-inclusion study and genetic model of wolframite-bearing quartz veins, Garganta de los Montes, Spanish Central System

Published online by Cambridge University Press:  05 July 2018

E. Ouilez
Affiliation:
Departamento de Cristalografia y Mineralogia, Facultad de C.C. Geologicas, Universidad Compiutense, 28040 Madrid, Spain
J. Sierra
Affiliation:
Departamento de Cristalografia y Mineralogia, Facultad de C.C. Geologicas, Universidad Compiutense, 28040 Madrid, Spain
E. Vindel
Affiliation:
Departamento de Cristalografia y Mineralogia, Facultad de C.C. Geologicas, Universidad Compiutense, 28040 Madrid, Spain

Abstract

Wolframite-bearing quartz veins from Garganta de los Montes, Madrid province, are hosted by banded gneisses that have undergone intense migmatization processes. The ore deposit is closely related to the La Cabrera granitic batholith. The veins strike 075° and dip 75°S. The mineral association includes wolframite, quartz and minor amounts of scheelite and sulphides (sphalerite, chalcopyrite, pyrrhotite, stannite and marcasite). The fluid phases associated with quartz from the vein margin (early barren quartz) and from the vein centre (late wolframite-bearing quartz) have been studied using microthermometry, scanning electron microscopy and crushing test analyses. Four hydrothermal stages have been distinguished.

The earliest fluids, only recognized in the barren quartz, contain brine, daughter phase (halite) and trapped minerals. The second hydrothermal stage is characterized by complex carbonic-aqueous inclusions of low salinity (3 to 7 wt.% eq. NaC1) and low density (0.4 to 0.7 g.cm−3). They mainly homogenize into liquid between 300 and 420°C. The third stage is represented by low to moderate salinity inclusions (<9 wt. % eq. NaCl) of moderate density (0.8 to 0.96 g.cm−3), homogenizing between 120° and 330°C. The latest fluids correspond to aqueous solutions of higher salinities (H2O-NaCl, with Ca2+ and Mg2+) and densities (>1 g.cm−3), with TH ranging between 50 and 130°C. The role of the complex-carbonic aqueous fluids in the transport and precipitation of tungsten is highlighted.

Type
Ore environments—gold mineralization
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, S. N. and Rose, A. W. (1980) Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Econ. Geol. 75, 229-50.CrossRefGoogle Scholar
Ayora, C., Guilhaumou, N., Touray, J. C. and Melgarejo, J. C. (1987) Scheelite-bearing quartz veins from Poblet (Catalonian Coastal Range). Characterization of fluid inclusions and genetic model. Bull. Mineral. 110, 603-11.Google Scholar
Ball, T. K., Fortey, N. J. and Shepherd, T. J. (1985) Mineralization at the Carrock Fell Mine, Cumbria, Northern England. Mineral Deposita, 20, 57-65.Google Scholar
Bellido, F. (1979) Estudio petrológico y geoquímico del plutón granitíco de La Cabrera (Madrid). Ph.D. thesis, Univ. Complutense, Madrid.Google Scholar
Canepa, C. (1968) Contribución a la metalogenia de la Sierra de Guadarrama (Ho]as 484 y 509, Provincia de Madrid). Ph.D. thesis, Univ. Complutense, Madrid.Google Scholar
Capote, R., Casquet, C., Fernandez Casels, M. J., Moreno, F., Navidad, M., Peinado, M. and Vegas, R. (1977) The Precambrian in the central part of the Iberian massif. Estudios Geol. 33, 343-55.Google Scholar
Cheilletz, A. (1984) Caractéristiques gèochimiques et Thermobarométriques des fluids associés à la sheelite et au quartz des mineralisations de Tungstène du djebel Aoun (Maroc. Central). Bull. Mineral. 107, 255-72.Google Scholar
Collins, P. L. F. (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol. 74, 1435-44.CrossRefGoogle Scholar
Crawford, M. L. (1981) Phase equilibria in aqueous fluid inclusions. In Short course in fluid inclusions: applications to petrology. (Hollister, L. S. and Crawford, M. L., eds.), 75-100.Google Scholar
Fernández Casals, M. J. (1974) Significado geotectónico de la formación Gneises de la Morcuera. Studia Geologica, 7, 87-106.Google Scholar
Fisher, J. R. (1976) The volumetric properties of H2O: a graphical portrayal. J. Research U.S. Geol. Survey, 4, 189-93.Google Scholar
Gherig, M. (1980) Phasenpleichgewischte und PVT daten ternarer mischungen aus wasser kohlendioxid und natriumchlorid bis 3KD und 550°C Ph.D. Thesis, Karlsruhe.Google Scholar
Higgins, N. C. (1980) Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Can. J. Earth. Sci. 17, 823-30.CrossRefGoogle Scholar
Hollister, L. S. and Burruss, R. C. (1976) Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex. Geochim. Cosmochim. Acta, 40, 163-75.CrossRefGoogle Scholar
Ivanova, G. F., Khitarov, D. N., Levkina, N. I., Milvsky, G. A. and Bannykh, L. P. (1976) Gas-liquid inclusion data on the composition of Tungsten bearing hydrothermal solutions. Geochem. lnternat. 13, 17-26.Google Scholar
Leroy, J. (1979) Contribution é l'ètalonnage de la pression interne des inclusions fluids lors de leur décrépiration. Bull. Soc. Fr. Mineral. Cristallogr. 102, 584-93.Google Scholar
Mangas, J. (1987a) Estudio de las inclusiones fluidas en los yacimientos españoles de estaño asociados a granitos hercínicos. Ph.D. thesis, Univ. Salamanca.Google Scholar
Mangas, J. (1987b) Fluid inclusion study on different types of tin deposits associated with the Hercynian granites of Western Spain. Chem. Geol. 61, 193-208.CrossRefGoogle Scholar
Mangas, J. (1988) Hydrothermal fluid evolution of the Sn-W mineralization in the Parrilla ore deposit (Caceres, Spain). J. Geol. Soc. London, 145, 147-55.CrossRefGoogle Scholar
Nicolls, J. and Crawford, M. L. (1985) Fortran programs for calculation of fluids properties from microthermometric data on fluid inclusions. Computers and Geosciences, 11, 619-45.CrossRefGoogle Scholar
Potter, R. W. and Brown, D. L. (1977) The volumetric properties of aqueous sodium chloride solutions from 0 ° to 500 °C and pressures up to 2000 bars based on a regression of available data in the literature. U.S. Geol. Survey Bull. 1421-C.Google Scholar
Poty, B., Leroy, J. and Jachimowicz, L. (1976) Un nouvel appareil put las mesure des témperatures sous le microscope: l'installations de microthermométrie Chaixmeca. Bull. Soc. Fr. Mineral. Cristallogr. 99, 182-7.Google Scholar
Shepherd, T. J., Miller, M. F., Scrivener, R. C. and Darbyshire, D. P. F. D. (1985) Hydrothermal fluid evolution in relation to mineralization in southwest England with special reference to the Dartmoor-Bodmin area. In High heat producing (HHP) granites, hydrothermal circulation and ore genesis. Inst. Mining Metall., 345-64.Google Scholar
Swanenberg, H. E. C. (1979) Phase equilibria in carbonic systems, and their application to freezing studies of fluid inclusions. Contrib. Mineral. Petrol. 68, 303-6.CrossRefGoogle Scholar
Tischendorf, G. (1977) Geochemical and petrographic characteristic of silicic magmatic rocks associated with rare element mineralization. In Metallization associated with Acid Magmatism. (Stemprok, M., Burnol, L. and Tischendorf, G., eds.), 2, 4196.Google Scholar
Vialette, Y., Bellido, F., Fuster, J. M. and Ibarrola, E. (1981) Donnés géochronologiques sur les granites de la Cabrera. Cuadernos de Geología lbérica, 7, 327-35Google Scholar
Vindel, E. (1980) Estudio mineralógico y petrológico de las mineralizaciones de la Sierra del Guadarrama. Ph.D. thesis, Univ. Complutense, Madrid.Google Scholar