Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T12:17:32.840Z Has data issue: false hasContentIssue false

From ancient pigments to modern optoelectronic applications of arsenic sulfides: bonazziite, the natural analogue of β-As4S4 from Khaidarkan deposit, Kyrgyzstan

Published online by Cambridge University Press:  02 January 2018

Luca Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze, Via La Pira 4, I-50121, Florence, Italy
Giovanni Pratesi
Affiliation:
Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze, Via La Pira 4, I-50121, Florence, Italy Museo di Storia Naturale, Sezione Mineralogia e Litologia, Universita` degli Studi di Firenze, Via La Pira 4, I-50121, Florence, Italy
Maurizio Muniz-Miranda
Affiliation:
Dipartimento di Chimica “Ugo Schiff”, Universita` degli Studi di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, Florence, Italy
Matteo Zoppi
Affiliation:
Museo di Storia Naturale, Sezione Mineralogia e Litologia, Universita` degli Studi di Firenze, Via La Pira 4, I-50121, Florence, Italy
Laura Chelazzi
Affiliation:
Dipartimento di Chimica “G. Ciamician”, Universita` di Bologna, Via Zamboni 33, I-40126, Bologna, Italy
Giovanni O. Lepore
Affiliation:
Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze, Via La Pira 4, I-50121, Florence, Italy
Silvio Menchetti
Affiliation:
Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze, Via La Pira 4, I-50121, Florence, Italy
*

Abstract

Bonazziite is a new mineral from Khaidarkan deposit, Kyrgyzstan and represents the natural analogue of the β-form of the well known As4S4 compound. It occurs as rare crystals up to 100 μm across associated with realgar, sulfur, wakabayashilite, alacránite, non-stoichiometric As4S4+x sulfides and stibnite in a calcite matrix. In thick section, bonazziite is opaque with a resinous lustre and a dark-orange streak. It is brittle; the Vickers hardness (VHN15) is 70 kg/mm2 (range: 60–76) (Mohs hardness of ∼2½). In plane-polarized incident light, bonazziite is strongly bireflectant and pleochroic from orange to light red. The mineral shows orange to red internal reflections. Between crossed polars, the mineral is strongly anisotropic with greyish to light-blue rotation tints. Reflectance percentages in air for Rmin and Rmax are 19.9, 22.2 (471.1 nm), 19.1, 21.3 (548.3 nm), 18.8, 19.7 (586.6 nm) and 17.8, 18.9 (652.3 nm), respectively. Bonazziite is monoclinic, space group C2/c, with a = 9.956(1), b = 9.308(1), c = 8.869(1) Å, β = 102.55(2)° and V = 802.3(2) Å3, Z = 4. The crystal structure [R1 = 0.0263 for 735 reflections with Fo > 4σ(Fo)] is based on the As4S4 cage-like molecule, in which each As atom links one As and two S atoms. The As4S4 molecule is identical to that found in the structure of realgar. The six strongest powder diffraction lines [d in Å (I/I0) (hkl)] are: 5.74 (100) (1̄11); 4.10 (60) (021); 3.92 (50) (1̄12); 3.12 (60) (022, 310); 2.95 (50) (221, 202); 2.86 (80) (2̄22, 1̄31). a mean of six electron microprobe analyses gave the formula As3.95S4.05, on the basis of eight atoms. The new mineral has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA No. 2013-141) and named for Paola Bonazzi, in recognition of her seminal contributions to the study of arsenic sulfides and their alteration induced by exposure to light.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bindi, L., Popova, V.I. and Bonazzi, P. (2003) Uzonite, As4S5, from the type-locality: X-ray single crystal study and lighting experiments. The Canadian Mineralogist 41, 1463-1468.CrossRefGoogle Scholar
Bindi, L., Bonazzi, P., Zoppi, M. and Spry, P.G. (2014a) Chemical variability in wakabayashilite: a real feature or an analytical artefact? Mineralogical Magazine 78, 693-702.Google Scholar
Bindi, L., Pratesi, G., Muniz-Miranda, M., Zoppi, M., Chelazzi, L., Lepore, G.O. and Menchetti, S. (2014b) Bonazziite, IMA 2013-141. CNMNC Newsletter No. 20, June 2014, page 554; Mineralogical Magazine 78, 549-558.Google Scholar
Blachnik, R., Hoppe, A. and Wickel, U. (1980) Die Systeme Arsen-Schwefel und Arsen-Selen und die thermodynamischen Daten ihrer Verbindungen. Zeitschrift für anorganische und allgemeine Chemie 463, 78-90.CrossRefGoogle Scholar
Bonazzi, P. and Bindi, L. (2008) A crystallographic review of arsenic sulfides: Effects of chemical variations and changes induced by light exposure. Zeitschrift für Kristallographie 223, 132-147.Google Scholar
Bonazzi, P., Menchetti, S. and Pratesi, G. (1995) The crystal structure of pararealgar, As4S4. American Mineralogist 80, 400-403.CrossRefGoogle Scholar
Bonazzi, P., Menchetti, S., Pratesi, G., Muniz-Miranda, M. and Sbrana, G. (1996) Light-induced variations in realgar and b-As4S4: X-ray diffraction and Raman studies. American Mineralogist 81, 874-880.CrossRefGoogle Scholar
Bonazzi, P., Bindi, L., Popova, V.I., Pratesi, P. and Menchetti, S. (2003a) Alacránite, As8S9: structural study of the holotype and re-assignment of the original chemical formula. American Mineralogist 88, 1796-1800.CrossRefGoogle Scholar
Bonazzi, P., Bindi, L., Olmi, F. and Menchetti, S. (2003b) How many alacránites do exist? a structural study of non-stoichiometric As8S9-x crystals. European Journal of Mineralogy 15, 282-288.CrossRefGoogle Scholar
Bonazzi, P., Lampronti, G.I., Bindi, L. and Zanardi, S. (2005) Wakabayashilite, [(As,Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning, and revised chemical formula. American Mineralogist 90, 1108-1114.CrossRefGoogle Scholar
Bonazzi, P., Bindi, L., Muniz Miranda, M., Chelazzi, L., Rödl, T. and Pfitzner, A. (2011) Light-induced molecular change in synthetic HgI2·As4S4: evidence by single-crystal X-ray diffraction and Raman spectroscopy. American Mineralogist 96, 646-653.CrossRefGoogle Scholar
Bryndzya, L.T. and Kleppa, O.J. (1988) Standard molar enthalpies of formation of realgar (a-AsS) and orpiment (As2S3) by high-temperature direct-synthe s i s calorime t r y. Journal of Chemical Thermodynamics 20, 755-764.CrossRefGoogle Scholar
Burgio, L., Clark, R.J.H. and Theodoraki, K. (2003) Raman microscopy of Greek icons: identification of unusual pigments. Spectrochimica Acta, A59, 2371-2389.CrossRefGoogle Scholar
Burns, P.C. and Percival, J.B. (2001) Alacránite, As4S4: a new occurrence, new formula, and determination of the crystal structure. The Canadian Mineralogist 39, 809-818.CrossRefGoogle Scholar
Chukanov, N.V., Karpenko, V.Y., Rastsvetaeva, R.K., Zadov, A.E. and Kuz’mina, O.V. (1999) Khaidarkanite Cu4Al3(OH)14F3·2H2O, a new mineral from the Khaidarkan deposit, Kyrgyzstan. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 128, 58-63.Google Scholar
Clark, A.H. (1970) Alpha-arsenic sulfide, from Mina Alacrà n, Pampa Larga, Chile. American Mineralogist 55, 1338-1344.Google Scholar
Clark, R.J.H. and Gibbs, P.J. (1998) Analytical approach: Raman microscopy of a 13th-century illuminated text. Analytical Chemistry 70, 99-104.CrossRefGoogle Scholar
Daniels, V. and Leach, B. (2004) The occurrence and alteration of realgar on Ancient Egyptian papyri. Studies in Conservation 49, 73-84.CrossRefGoogle Scholar
Douglass, D.L., Shing, C. and Wang, G. (1992) The light-induced alteration of realgar to pararealgar. American Mineralogist 77, 1266-1274.Google Scholar
Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B. Jr (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist 78, 1104-1107.Google Scholar
Hall, H.T. (1966) The system Ag-Sb-S, Ag-As-S, and Ag- Bi-S: Phase relations and Mineralogical Significance. PhD Thesis, Brown University, Providence, Rhode Island, USA.Google Scholar
Holomb, R., Mitza, V., Johansson, P., Mateleshko, N., Matic, A. and Veresh, M. (2005) Energy-dependence of light-induced changes in g-As45S55 during recording the micro-Raman spectra. Chalcogenide Letters 2, 63-69.Google Scholar
Kutoglu, A. (1976) Darstellung und Kristallstruktur einer neuen isomeren Form von As4S4. Zeitschrift für anorganische und allgemeine Chemie 419, 176-184.CrossRefGoogle Scholar
Jurado-Lopez, A., Demko, O., Clark, R.J.H. and Jacobs, D. (2004) Analysis of the palette of a precious 16th century illuminated Turkish manuscript by Raman microscopy. Journal of Raman Spectroscopy 35, 119-124.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (Editors) (1974) International Tables for X-ray Crystallography, vol. IV. Kynock, Dordrecht, The Netherlands, pp. 366.Google Scholar
Lepore, G.O., Boffa Ballaran, T., Nestola, F., Bindi, L., Pasqual, D. and Bonazzi, P. (2012) Compressibility of synthetic b-As4S4: In situ high-pressure singlecrystal X-ray study. Mineralogical Magazine 76, 963-973.CrossRefGoogle Scholar
Mullen, D.J.E. and Nowacki, W. (1972) Refinement of the crystal structures of realgar, AsS and orpiment, As2S3. Zeitschrift für Kristallographie 136, 48-65.CrossRefGoogle Scholar
Muniz-Miranda, M., Sbrana, G., Bonazzi, P., Menchetti, S. and Pratesi, G. (1996) Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochimica Acta, A52, 1391-1401.CrossRefGoogle Scholar
Neˇmec, P., Jedelský, J., Frumar, M., Černošek, Z. and VlČek, M. (2005) Structure of pulsed-laser deposited arsenic-rich As-S amorphous thin films, and effect of light and temperature. Journal of Non-Crystalline Solids 351, 3497-3502.CrossRefGoogle Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.Google Scholar
Pagliai, M., Bonazzi, P., Bindi, L., Muniz-Miranda, M. and Cardini, G. (2011) Structural and vibrational properties of arsenic sulfides: alacránite (As8S9). Journal of Physical Chemistry A 115, 4558-4562.CrossRefGoogle Scholar
Percival, J.B., Hannington, M.D., Herzig, P.M. and Jonasson, I.R. (1999) Clay mineral associations in sulphide-bearing volcanic rocks and sediments from the Lihir area, Papua New Guinea. Pp. 689-696. in: Clays for our Future (Kodama, H., Mermut, A.R. and Torrance, J.K., editors). Proceedings of the 11th International Clay Conference, ICC97 Organizing Committee, Ottawa.Google Scholar
Popova, V.I., Popov, V.A., Clark, A., Polyakov, V.O. and Borisovski, S.E. (1986) Alacránite As8S9; a new mineral. Proceedings of the Russian Mineralogical Society (ZVMO) 115, 360-368. [in Russian].Google Scholar
Porter, E.J. and Sheldrick, G.M. (1972) Crystal structure of a new crystalline modification of tetra-arsenic tetrasulphide (2,4,6,8-tetrathia-1,3,5,7-tetra-arsatricyclo[ 3,3,0,03,7]-octane). Journal of the Chemical Society, Dalton Transactions 13, 1347-1349.CrossRefGoogle Scholar
Roberts, A.C., Ansell, H.G. and Bonardi, M. (1980) Pararealgar, a new polymorph of AsS, from British Columbia. The Canadian Mineralogist 18, 525-527.Google Scholar
Roland, G.W. (1972) Concerning the a-AsS realgar inversion. The Canadian Mineralogist 11, 520-525.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist 45, 983-1055.CrossRefGoogle Scholar
Trentelman, K., Stodulski, L. and Pavlosky, M. (1996) Characterization of pararealgar and other lightinduced transformation products from realgar by Raman microspectroscopy. Analytical Chemistry 68, 1755-1761.CrossRefGoogle Scholar
Whitfield, H.J. (1970) The crystal structure of tetraarsenic trisulphide. Journal of Chemical Society, Dalton Transactions, 1800-1803.Google Scholar
Whitfield, H.J. (1973a) Crystal structure of the b-form of tetra-arsenic trisulphide. Journal of the Chemical Society, Dalton Transactions, 1737-1738.Google Scholar
Whitfield, H.J. (1973b) Crystal and molecular structure of tetra-arsenic pentasulphide. Journal of the Chemical Society, Dalton Transactions, 1740-1742.Google Scholar
ŽáČek, V. and Ondruš, P. (1997) Mineralogy of recently formed sublimates from Kateřina colliery in Radvanice, Eastern Bohemia, Czech Republic. Bulletin of the Czech Geological Survey 72, 289-302.Google Scholar
Zoppi, M. and Pratesi, G. (2012) The dual behavior of the b-As4S4 altered by light. American Mineralogist 97, 890-896.CrossRefGoogle Scholar
Zoppi, M., Bindi, L., Rö dl, T., Pfitzner, A. and Bonazzi, P. (2013) Light-induced structural changes in (HgBr2)3(As4S4)2: An X-ray single-crystal diffraction, Raman spectroscopy and ab initio study. Solid State Sciences 23, 88-95.CrossRefGoogle Scholar
Supplementary material: File

Bindi et al. supplementary material

Table 3

Download Bindi et al. supplementary material(File)
File 1.3 MB