Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T23:28:04.344Z Has data issue: false hasContentIssue false

Gmelinite and herschelite from the Ilímaussaq intrusion in South Greenland

Published online by Cambridge University Press:  05 July 2018

S. Karup-Møller*
Affiliation:
Institut for Petrologi, Øster Voldgade 5-7, DK-1350, København K, Danmark

Summary

Hypogene alteration of ussingite from the southern part of the Ilimaussaq intrusion in South Greenland has resulted in the formation of three associations: gmelinite-apophyllite, gmeliniteherschelite- earthy-natrolite, and earthy natrolite alone. Ossingite reacted with late magmatic fluids, producing the secondary minerals either by in situ replacement of the ussingite or in cavities, which may be up to 3 cm across.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bøggild, (O. B.), 1913. Ussingit, et nyt mineral fra Kangerdluarssuk. Medd Grønland, 51, 103-10.Google Scholar
Bøggild, (O. B.), 1953. The mineralogy of Greenland. Ibid. 149, 3, 1-442.Google Scholar
Engell, (J.), 1968. Beskrivelse af forekomst og dannelse af nogle usshlgitårer i llimaussaq intrusionen (unpublished thesis, University of Copenhagen, Denmark).Google Scholar
[Gerasimovsky, (V. I.)] , 1969. [Geochemistry of the Ilimaussaq alkaline massif.] [Izd. “Nauka”, Moscow.]Google Scholar
Gude, (A. J.) and Sheppard, (R.), 1966. Silica-rich chabazite from the Barstoc formation, San Bernardino County, Southern California. Amer. Min. 51, 909-15.Google Scholar
Lévy, (A.), 1825. Descriptions of two new minerals. Ann. Phil. 10, 361-3.Google Scholar
Mason, (B.), 1962. Herschelite—a valid species? Amer. Min. 47, 985-7.Google Scholar
Pereyron, (A.), Guth, (J. L.), and Wey, (R.), 1971. Étude du diagramme Na2O, Li2O, Al2O3, SiO2, H2O dans le domaine de formation des zeolites. C.R. Acad. Sc., Paris, 272 Ser. D, 181-4.Google Scholar
Platt, (R. G.) and Rose-Hansen, (J.), 1975. The system ussingite-water and its bearing on crystallization in persodic portions of the system Na2O-Al2Oa-SiO2 H2O at 1 Kb total pressure. Journ. Geol. 83, 763-72.CrossRefGoogle Scholar
[Semenov, (E. I.), Organova, (N. I.) and Kukharchik, (M. V.)] , 1961. [New data on the minerals of the lomonosovite-murmanite group.] [Soviet Phys. Crystallogr. 6, 746-51.]Google Scholar
[Semenov, (E. I.), Organova, (N. I.) and Kukharchik (M.V.)] 1972. [Mineralogy of the Lovozero alkaline massif.] [Publishing house Nauka, Moscow.]Google Scholar
Sobolev, (V. S.), Bazarova, (T. Y.), Shugurova, (N. A.), Dolgov, (Yu. A.), and Sørensen, (H.), 1970. A preliminary examination of fluid inclusions in nepheline, sorensenite, tugtupite and chkalovite from the Illmaussaq alkaline intrusion, South Greenland. Bull. Gronlands geol. Unders. 81 (also Medd. Gran land, 181, II) 1-32.Google Scholar
Sørensen, (H.), Leonardsen, (E.), and Petersen, (O. V.), 1970. Trona and thermonatrite from the Ilimaussaq alkaline intrusion, South Greenland. Bull. Geol. Soc. Denmark, 20, 1, 1-15.Google Scholar
Sørensen, (H.), Danø, (M.) and Petersen, (O. V.), 1971. On the mineralogy and paragenesis of tugtupite Na8Al2 Be8O24(Cl, S)2. Bull. Gronlands geol. Unders. 95 (also Medd. Gronland, 181, 13) 138.Google Scholar
Walker, (G. P. L.), 1961a. The amygdale minerals in the Tertiary lavas of Ireland. II. Distribution of gmelinite. Min. Mag. 32, 202-17.Google Scholar
Walker, (G. P. L.), 1961b. The amygdale minerals in the Tertiary lavas of Ireland. III. Regional distribution. Ibid. 32, 503-27.CrossRefGoogle Scholar
[Yakovlevskaya, (T. A.) and Semenov, (E. I.)] , 1963. . [Some new data on chkalovite.] , 14. [Trudy miner, muz. 14, 265-7.]Google Scholar