Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T23:04:44.491Z Has data issue: false hasContentIssue false

Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway

Published online by Cambridge University Press:  05 July 2018

A. Müller*
Affiliation:
Geological Survey of Norway, N-7491 Trondheim, Norway
M. Koch-Müller
Affiliation:
Deutsches GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany
*

Abstract

Concentrations of a series of trace elements of 14 quartz samples from various geological settings (hydrothermal, igneous, metamorphic) in Norway were determined by LA-ICP-MS. FTIR spectroscopy was applied to the same quartz crystals in order to determine the H concentrations and the speciation of H in the quartz lattice. A refined hypothetical charge neutrality equation is suggested, where the atomic ratio of (Al3+ + Fe3+ + B3+) to (P5+ + H+ + Li+ + Na+ + K+) should correspond to 1 for natural quartz crystals. The determined concentrations of Al, Fe, B, P, Li, K and OH- species confirm approximately the charge neutrality equation. The high H/(Li+K+P) ion ratio of igneous quartz compared to hydrothermal and metamorphic quartz, suggests that igneous quartz preferentially incorporates H as OH- in lieu of Li, K and P. The results confirm that the FTIR absorption of the OH- band at 3595 cm-1 is attributed to structural B defects in the quartz lattice. The dominating H impurity in most of the quartz samples is, however, molecular H2O. The molecular H2O is presumably related to waterbearing micro pores and not to visible fluid inclusions, because the spectra were recorded from microscopically clear crystals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aines, R.D. and Rossman, G.R. (1984) Water in minerals? A peak in the infrared. Journal of Geophysical Research, 89, 40594071.CrossRefGoogle Scholar
Aines, R.D., Kirby, S.H. and Rossman, G.R. (1984) Hydrogen speciation in synthetic quartz. Physics and Chemistry of Minerals, 11, 204212.CrossRefGoogle Scholar
Andersen, T. (1997) Radiogenic isotope systematics of the Herefoss Granite, South Norway; an indicator of Sveconorwegian (Grenvillian) crustal evolution in the Baltic Shield. Chemical Geology, 135, 139158.CrossRefGoogle Scholar
Baadsgaard, H., Chaplin, C. and Griffin, W.L. (1984) Geochronology of the Gloserheia pegmatite, Froland, southern Norway. Norsk Geologisk Tidsskrift, 64, 111119.Google Scholar
Bahadur, H. (1994) Sweeping and irradiation effects on hydroxyl defects in crystalline natural quartz. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41, 820833.CrossRefGoogle ScholarPubMed
Bambauer, H.U. (1961) Spurenelementgehalt und - Farbzentren in Quarzen aus Zerrkluften der Schweizer Alpen. Schweizerische Mineralogische und Petrographische Mitteilungen, 41, 335369.Google Scholar
Bambauer, H.U., Brunner, G.O. and Laves, F. (1962) Wasserstoff-Gehalte in Quarzen aus Zerrkluften der Schweizer Alpen und die Deutung ihrer regionalen Abhangigkeit. Schweizerische Mineralogische und Petrographische Mitteilungen, 42, 221236.Google Scholar
Bambauer, H.U., Brunner, G.O. and Laves, F. (1963) Merkmale des OH-Spektrums alpiner Quarze (3p- Gebiet). Schweizerische Mineralogische und Petrographische Mitteilungen, 43, 259268.Google Scholar
Bell, D.R., Ihinger, P.D. and Rossman, G.R. (1995) Quantitative analysis of trace OH in garnet and pyroxenes. American Mineralogist, 80, 465474.CrossRefGoogle Scholar
Bingen, B., Boven, A., Punzalan, L., Wijbrans, J.R. and Demaiffe, D. (1998) Hornblende 40Ar/39Ar geochronology across terrane boundaries in the Sveconorwegian Province of S. Norway. Precambrian Research, 90, 159185.CrossRefGoogle Scholar
Birkeland, A., Sigmond, E.M., Whitehouse, M.J., Vestin, J. (1997) From Archean to Proterozoic on Hardangervidda, South Norway. Geological Survey of Norway Bulletin, 433, 45.Google Scholar
Blacic, J.D. and Christie, J.M. (1984) Plasticity and hydrolytic weakening of quartz single crystals. Journal of Geophysical Research, 89, 42234239.CrossRefGoogle Scholar
Blankenburg, H.-J., Götze, J. and Schulz, J. (1994) Quarzrohstoffe. DeutscherVerlag fiir Grundstoffindustrie, Leipzig-Stuttgart, Germany.Google Scholar
Breiter, K. and Müller, A. (2009) Evolution of rare metal-specialised granite magmas documented by quartz trace-element chemistry. European Journal of Mineralogy, 21, 335346.CrossRefGoogle Scholar
Bruhn, F., Bruckschen, P., Meijer, J., Stephan, A., Richter, D.K. and Veizer, J. (1996) Cathodo-luminescence investigations and trace-element analysis of quartz by micro-PIXE: implications for diagenetic and provenance studies in sandstone. The Canadian Mineralogist, 34, 12231232.Google Scholar
Brunner, G.O., Wondratschek, H. and Laves, F. (1961) Ultrarotuntersuchungen fiber den Einbau von H in natiirlichen Quarz. Zeitschrift fiir Elektrochemie, 65, 735750.Google Scholar
Dash, K., Thangavel, S., Rao, S.V., Chandrasekaran, K., Chaurasia, S.C. and Arunachalam, J. (2004) Ion chromatographic determination of trace level phosphorus in purified quartz. Journal of Chromatography A, 1036, 223227.CrossRefGoogle ScholarPubMed
Dennen, W.H. (1966) Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica Acta, 30, 12351241.CrossRefGoogle Scholar
Flem, B. and Bedard, L.P. (2002) Determination oftrace elements in BCS CRM 313/1 (BAS) and NIST SRM 1830 by inductively coupled plasma-mass spectrometry and instrumental neutron activation analysis. Geostandards Newsletter, 26, 287300.CrossRefGoogle Scholar
Flem, B., Larsen, R.B., Grimstvedt, A. and Mansfeld, J. (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182, 237247.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Habermann, D. (2001) Origin, spectral characteristics and practical applicationsof the cathodoluminescence (CL) of quartz - a review. Mineralogy and Petrology, 71, 225250.Google Scholar
Griggs, D.T. and Blacic, J.D. (1965) Quartz: anomalous weakness of synthetic crystals. Science, 147, 292295.CrossRefGoogle ScholarPubMed
Hertweck, B., Niedermayr, G. and Beran, A. (2003) OH zoning ion alpine quartz from Austria., European Geophysical Society (CD-Rom) Vol. 5, EGS-AGU- EUG Joint Assembly, April 6 to 11, Nice, France: 08506.Google Scholar
Jourdan, A.-L., Vennemann, T.W., Mullis, J., Ramseyer, K. and Spiers, C.J. (2009) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy, 21, 219231.CrossRefGoogle Scholar
Kats, A. (1962) Hydrogen in alpha-quartz. Philips Research Reports, 17, 133279.Google Scholar
Kekulawala, K.R.S., Paterson, M.S. and Boland, J.W. (1981) An experimental study of the rule of water in quartz deformation. Pp. 49-60 in: Mechanical behaviour of crustal rocks (N.L. Carter, M. Friedman, J.M. Logan and O.W. Stearns, editors). Geophysical Monograph, 24, American Geophysical Union, Washington, DC. Google Scholar
Koch-Müller, M., Fei, Y., Hauri, E. and Liu, Z. (2001) Location and quanitative analysis of OH in coesite. Physics and Chemistry of Minerals, 28, 693705.CrossRefGoogle Scholar
Kronenberg, A.K. (1994) Hydrogen speciation and chemical weakening of quartz. Pp. 123- 176 in: Silica: physical behaviour, geochemistry and materials applications (P.J. Heaney, C.T. Prewitt and G.V. Gibbs, editors). Reviews in Mineralogy, 29, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Kronenberg, A.K., Kirby, S.H., Aines, R.D. and Rossmann, G.R. (1986) Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implications for hydrolytic weakening in the laboratory and within the earth. Tectonophysics, 172, 255271.CrossRefGoogle Scholar
Kroschwitz, J.L. and Howe-Grant, M. (1996) Kirk- Othmer Encyclopedia of Chemical Technology (Vol. 21). 4th ed., John Wiley & Sons, New York.Google Scholar
Larsen, R.B., Henderson, I., Ihlen, P.M. and Jacamon, F. (2004) Distribution and petrogenetic behaviour of trace elements in granitic quartz from South Norway. Contributions to Mineralogy and Petrology, 147, 615628.CrossRefGoogle Scholar
Lehmann, K., Driehorst, F., Ramseyer, K., Pettke, T. and Wiedenbeck, M. (2008) Trace element uptake in quartz cement - a function of temperature or fluid characteristics? Abstract CD-ROM, IGC Oslo, 6th- 14th August 2008.Google Scholar
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American Mineralogist, 82, 11111115.CrossRefGoogle Scholar
Lindqvist, J.-E. (1987) Metamorphism in basement rocks and the implications for the tectonic evolution, Nasafjall Window, Scandinavian Caledonides. Geologische Rundschau, 76, 837850.CrossRefGoogle Scholar
Luckscheiter, B. and Morteani, G. (1981) The H contents of quartz from Alpine veins from the Penninic rocks of the central and western Tauern Window (Austria/Italy). Tschermaks Mineralogisch- Petrologische Mitteilungen, 28, 223228.CrossRefGoogle Scholar
Maschmeyer, D. and Lehmann, G. (1983) A trapped- hole center causing rose coloration of natural quartz. Zeitschrift fur Kristallographie, 163, 181196.Google Scholar
Melezhik, V.A., Hudson-Edwards, K.A., Skufin, P.K. and Nilsson, L.P. (1994) Pechenga area, Russia - Part 1: Geological setting and comparison with Pasvik, Norway. Transactions of the Institution of Mining and Metallurgy, 103, B129-B145.Google Scholar
Miyoshi, N., Yamaguchi, Y. and Makino, K. (2005) Successive zoning of Al and H in hydrothermal vein quartz. American Mineralogist, 90, 310315.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Van den Kerkhof, A.M., Kronz, A. and Simon, K. (2003) Trace elements in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS and cathodoluminescence study. European Journal of Mineralogy, 15, 747763.CrossRefGoogle Scholar
Müller, A., Ihlen, P.M., Wanvik, J.E. and Flem, B. (2007) High-purity quartz mineralisation in kyanite quartzites, Norway. Mineralium Deposita, 42, 523535.CrossRefGoogle Scholar
Müller, A., Ihlen, P.M. and Kronz, A. (2008a) Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. European Journal of Mineralogy, 20, 447463.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Flem, B. and Schiellerup, H. (2008b) Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostandards and Geoanalytical Research, 32, 361376.CrossRefGoogle Scholar
Müller, A., Behr, H.-J., van den Kerkhof, A.M., Kronz, A. and Koch-Müller, M. (2009) The evolution of late-Hercynian granites and rhyolites documented by quartz - a review. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, (in press).CrossRefGoogle Scholar
Nijland, T.G. (1993) The Bamble amphibolites to granulite facies transition zone, Norway. Geologica Ultraiectina, 101; PhD thesis, Utrecht University, Netherlands, 166 pp.Google Scholar
Paterson, M. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de Min^ralogie, 105, 2029.CrossRefGoogle Scholar
Rickard, M.J. (1985) The Surnadal synform and basement gneisses in the Surnadal-Sunndal district of Norway. Pp. 485-497 in: The Caledonide Orogen - Scandinavia and Related Areas (D.G. Gee and B.A. Sturt, editors). John Wiley & Sons Ltd., New York.Google Scholar
Rossman, G.R. (1988) Vibrational Spectroscopy of hydrous components. Pp. 193-206 in: Spectroscopic Methods in Mineralogy and Geology (F.C. Hawthorne, editor). Reviews in Mineralogy and Geochemistry, 18, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Rovetta, M.R., Blacic, J.D., Hervig, R.L. and Holloway, J.R. (1989) An experimental study of hydroxyl in quartz using infrared spectroscopy and ion microprobe techniques. Journal of Geophysical Research, 94, 58405850.CrossRefGoogle Scholar
Sawyer, E.W. (1986) Metamorphic assemblages and conditions in the Rombak basement window. Norges Geologiske Unders0kelse, Report 86.168, Trondheim, Norway.Google Scholar
Simpson, D.R. (1977) Aluminum phosphate variants in feldspars. American Mineralogist, 62, 351355.Google Scholar
Smith, J.V. and Steele, I.M. (1984) Chemical substitution in silica polymorphs. Neues Jahrbuch fur Mineralogie Monatshefte, 137144.Google Scholar
Spear, F.S. and Selverstone, J. (1983) Water exsolution from quartz: Implications for the generation of retrograde metamorphic fluids. Geology, 11, 285.2.0.CO;2>CrossRefGoogle Scholar
Stephens, M.B., Gustavson, M., Ramberg, I.B. and Zachrisson, E. (1985) The Caledonides of central north Scandinavia-a tectonostratigraphic overview. Pp. 135-162 in: The Caledonide Orogen - Scandinavia and Related Areas (D.G. Gee and B.A. Sturt, editors). John Wiley & Sons Ltd., New York.Google Scholar
Thomas, S.-M. (2008) Wasserstoff in nominell wasser- freien Mineralen. PhD thesis. TU Berlin, D 83, 134 pp.Google Scholar
Thomas, S.-M., Koch-Müller, M., Reichart, P., Rhede, D., Thomas, R. and Wirth, R. (2009) IR calibrations for water determination in olivine, r-GeO2 and SiO2 polymorphs. Physics and Chemistry of Minerals, 36, doi: 10.1007/s00269-009-0295-1.CrossRefGoogle Scholar
Wark, D.A. and Watson, E.B. (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743754.CrossRefGoogle Scholar
Watt, G.R., Wright, P., Galloway, S. and McLean, C. (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et Cosmochimica Acta, 61, 43374348.CrossRefGoogle Scholar
Wegden, M., Kristiansson, P., Skogby, H., Auzelyte, V., Elfman, M., Malmqvist, K.G., Nilsson, C., Pallon, J. and Shariff, A. (2005) Hydrogen depth profiling by p-p scattering in nominally anhydrous minerals. Nuclear Instruments and Methods in Physics Research Section B, 231, 524529.CrossRefGoogle Scholar
Weil, J.A. (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals, 10, 149165.CrossRefGoogle Scholar
Yurimoto, H., Kurosawa, M. and Sueno, S. (1989) Hydrogen analysis in quartz crystals and quartz glasses by secondary ion mass spectrometry. Geochimica et Cosmochimica Acta, 53, 751755.CrossRefGoogle Scholar