Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T00:55:43.490Z Has data issue: false hasContentIssue false

Ilímaussaq ‘en miniature’: closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilímaussaq no. 117)

Published online by Cambridge University Press:  05 July 2018

M. Marks*
Affiliation:
Institut für Geowissenschaften, AB Mineralogie und Geodynamik, Eberhard-Karls-Universität, Wilhelmstraße 56, D-72074 Tübingen, Germany
G. Markl
Affiliation:
Institut für Geowissenschaften, AB Mineralogie und Geodynamik, Eberhard-Karls-Universität, Wilhelmstraße 56, D-72074 Tübingen, Germany

Abstract

Based on petrography, mineral chemistry, and petrology, the physico-chemical evolution of an agpaitic dyke was found to be very similar to that of the neighbouring Ilímaussaq complex. Various mineral assemblages were used to reconstruct the crystallization conditions of the dyke rock for different stages during cooling. The early magmatic phenocryst assemblage is alkali feldspar + nepheline + augite + olivine + magnetite and indicates liquidus temperatures of ∼850ºC, silica activities of ∼0.5, and oxygen fugacities of FMQ –1.5 to –3. The groundmass assemblage albite + microcline + nepheline + sodalite + arfvedsonite + aegirine + aenigmatite + astrophyllite indicates lower temperatures of between 600 and 450ºC, at silica activities of 0.25, and oxygen fugacities around the FMQ buffer. Amphibole composition strongly responds to fluorite saturation and proves crystallization occurred in a system closed to oxygen. Late-stage hydrothermal conditions are indicated by the conversion of nepheline and sodalite to analcime and the growth of aegirine on arfvedsonite. These late-stage reactions are constrained to temperatures of <300°C, water activities of between 0.5 and unity, and oxygen fugacities above MH. The dyke has to be regarded as a small equivalent of the larger Ilímaussaq complex, in which identical differentiation processes proceeded at a scale very different in terms of magma volume and cooling times.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaart, J.H. (1969) The chronology and petrography of the Gardar dykes between Igaliko Fjord and Red ekammen, South Gr eenl and. R apport Grønlands Geologiske Undersøgelse, 25, 20.Google Scholar
Andersen, D.J., Lindsley, D.H. and Davidson, P.M. (1993) QUILF: a PASCAL program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences, 19, 13331350.CrossRefGoogle Scholar
Armstrong, J.T. (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. Pp. 261315 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York & London.CrossRefGoogle Scholar
Bailey, D.K. (1969) The stability of acmite in the presence of H2O. American Journal of Science, 267-A, 116.Google Scholar
Berman, R. (1988) Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaOMgO- FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445522.CrossRefGoogle Scholar
Berman, R.G., Brown, T.H. and Perkins, E.H. (1987) Geo-Calc; software for calculation and display of P-T-X phase diagrams. American Mineralogist, 72, 861862.Google Scholar
Boily, M. and Williams-Jones, A.E. (1994) The role of magmatic and hydrotherma l processes in the chemical evolution of the Strange Lake plutonic complex, Quebec-Labrador. Contribu tions to Mineralogy and Petrology, 118, 3347.CrossRefGoogle Scholar
Bridgwater, D. (1967) Feldspathic inclusions in the Gardar igneous rocks of South Greenland and their relevance to the formation of major anorthosites in the Canadian Shield. Canadian Journal of Earth Sciences, 4, 9951014.CrossRefGoogle Scholar
Bridgwater, D. and Harry, W.T. (1968) Anorthosite xenoliths and plagioclase megacrysts in Precambrian intrusions of South Greenland. Meddelelser om Grønland, 185, 243.Google Scholar
Brown, S.J.A. and Fletcher, I.R. (1999) SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru ignimbrite, New Zealand: evidence for >250 ka magma residence time. Geology, 27, 10351038.2.3.CO;2>CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): comparisons between potassic and sodic agpaitic pegmatites. Contributions to Mineralogy and Petrology, 143, 93114.CrossRefGoogle Scholar
Charlier, B.L.A. and Zellmer, G. (2000) Some remarks on U-Th mineral ages from igneous rocks with prolong ed crystal lisation history. Earth and Planetary Science Letters, 183, 457469.CrossRefGoogle Scholar
Cherniak, D.J. (2002) Ba diffusion in feldspar. Geochimica et Cosmochimica Acta, 66, 16411650.CrossRefGoogle Scholar
Coulson, I.M. (1997) Post-magmatic alteration in eudialyte from the North Qôroq centre, South Greenland. Mineralogical Magazine, 61, 99109.CrossRefGoogle Scholar
Davies, G.R. and Macdonald, R. (1987) Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28, 10091031.CrossRefGoogle Scholar
Edgar, A.D. and Parker, L.M. (1974) Comparison of melting relationships of some plutonic and volcanic peralk aline undersa turated rocks. Lithos, 7, 263273.CrossRefGoogle Scholar
Emeleus, C.H. and Upton, B.G.J. (1976) The Gardar period in southern Greenland. Pp. 152181 in: Geology of Greenland (Escher, A. and Watt, W.S., editors ), Geological Survey of Greenland, Copenhagen.Google Scholar
Ferguson, J. (1964) Geology of the Ilõ´maussaq alkaline intrusion, South Greenland. Bulletin Grønlands Geologiske Undersøgelse, 39, 82.Google Scholar
Finch, A.A., Parsons, I. and Mingard, S.C. (1995) Biotites as indicators of fluorine fugacities in latestage magmatic fluids: the Gardar Province in South Greenland. Journal of Petrology, 36, 17011728.Google Scholar
Frisch, W. and Abde l-Rahman, A.M. (1999) Petrogenesis of the Wadi Dib alkaline ring complex, Eastern Desert of Egypt. Mineralogy and Petrology, 65, 249275.CrossRefGoogle Scholar
Frost, B.R. and Lindsley, D.H. (1992) Equilibria among Fe-Ti-oxides, pyroxenes, olivine, and quartz: Part II. Applic at ion. Ameri can Minera logi st, 77, 10041020.Google Scholar
Fuhrman, M.L. and Lindsley, D.H. (1988) Ternaryfeldspar modeling and thermometry. American Mineralogist, 73, 201205.Google Scholar
Halama, R., Waight, T. and Markl, G. (2002) Geochemical and isotopic zoning patterns of plagioclase megacrysts in gabbroic dykes from the Gardar Province, South Greenland: implications for crystalli sation processe s in anorthos it ic magmas. Contributions to Mineralogy and Petrology, 144, 109127.CrossRefGoogle Scholar
Hamilton, D.L. (1961) Nephelines as crystallisation temperature indicators. Journal of Geology, 69, 321329.CrossRefGoogle Scholar
Harris, C. (1995) Oxygen isotope geochemistry of the Mesozoic anorogenic complexes of Damaraland, northwest Namibia: evidence for crustal contamination and its effects on silica saturation. Contributions to Mineralogy and Petrology, 122, 308321.CrossRefGoogle Scholar
Heaman, L.M. and Machado, N. (1992) Timing and origin of midcontinent rift alkaline magmatism, North America: evidence from the Coldwell Complex. Contribu tions to Mineral ogy and Petrology, 110, 289303.CrossRefGoogle Scholar
Holland, T.J.B. (1990) Activities of components in omphacitic solid solutions; an application of Landau theory of mixtures. Contributions to Mineralogy and Petrology, 105, 446453.CrossRefGoogle Scholar
Johnson, J.W., Oelkers, E.H. and Helgeson, H. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000ºC. Computers and Geosciences, 18, 899947.CrossRefGoogle Scholar
Khomyakov, A.P. (1995) Mineralogy of hyperagpaitic alkaline rocks. Pp. 222 in. Oxford Scientific Publications., Clarendon Press, Oxford, UK.Google Scholar
Kogarko, L.N. (1974) Rôle of volatiles. Pp. 474487 in. The Alkaline Rocks., (Sørensen, H., editor). John Wiley and Sons, London.Google Scholar
Kogarko, L.N. and Romanchev, B.P. (1977)) Temperature, pressure, redox conditions, and mineral equilibria in agpaitic nepheline syenites and apatite - nephelinerocks. Geochemistry International, 14, 113128.Google Scholar
Kogarko, L.N. and Romanchev, B.P. (1982) Phase equilibria in alkaline melts. International Geology Review, 25, 534546.CrossRefGoogle Scholar
Konnerup-Madsen, J. and Rose-Hansen, J. (1984) Composition and significance of fluid inclusions in the Ilõ´maussaq peralkaline granite, South Greenland. Bulletin de Minéralogie, 107, 317326.CrossRefGoogle Scholar
Kramm, U. and Kogarko, L.N. (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Province, Russia. Lithos, 32, 225242.CrossRefGoogle Scholar
Kunzmann, T. (1999) The aenigmatite-rhönite mineral group. European Journal of Mineralogy, 11, 743756.CrossRefGoogle Scholar
Landolt, H. and Börnstein, R. (1982) Thermal conductivity and specific heat of rocks. Pp. 305343 in. Physical Properties of Rocks, (Angenhuster, G., editor). Springer, Heidelberg & New York.Google Scholar
Larsen, L.M. (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilõ´maussaq intrusion, south Greenland. Journal of Petrology, 17, 258290.CrossRefGoogle Scholar
Larsen, L.M. (1977) Aenigmatites from the Ilõ´maussaq intrusion, south Greenland: Chemistry and petrological implications. Lithos, 10, 257270.CrossRefGoogle Scholar
Larsen, L.M. (1981) Chemistry of feldspars in the Ilõ´maussaq augite syenite with additional data on some other minerals. Rapport Grønlands Geologiske Undersøgelse, 103, 3137.Google Scholar
Larsen, L.M. and Sørensen, H. (1987) The Ilõmaussaq intrusion – progressive crystallization and formation of layering in an agpaitic magma. Pp. 473488 in. Alkaline Igneous Rocks, (Fitton, J.G. and Upton, B.G.J., editors). Special Publication, 30. Geological Society, London.Google Scholar
Larsen, L.M. and Steenfelt, A. (1974) Alkali loss and retention in an iron-rich peralkaline phonolite dyke from the Gardar province, south Greenland. Lithos, 7, 8190.CrossRefGoogle Scholar
Liebermann, J. and Petrakakis, K. (1990) TWEEQU thermobarometry, analysis of uncertainties and applications to granulites from western Alaska. The Canadian Mineralogist, 29, 857887.Google Scholar
Lindsley, D.H. and Frost, B.R. (1992) Equilibria among Fe-Ti-oxides, pyroxenes, olivine, and quartz: Part I. Theory. American Mineralogist, 77, 9871003.Google Scholar
McKay, G.A., Miyamoto, M., Mikouchi, T. and Ogapa, T. (1998) The cooling history of the Lewis Cliff 86010 angrite as inferred from kirschsteini te lamellae in olivine. Meteoritics and Planetary Science, 33, 977983.CrossRefGoogle Scholar
Macdonald, R. (1966) Petrological studies of some alkalic and peralkalic dyke rocks from the Tugtutoq- Narssaq area. Rapport Grønlands Geologiske Undersøgelse, 11, 4447.Google Scholar
Markl, G. (2001) Stability of Na-Be minerals in latemagmatic fluids of the Ilõ´maussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 145158.CrossRefGoogle Scholar
Markl, G. and Baumgartner, L. (2002) pH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology, 144, 3136.CrossRefGoogle Scholar
Markl, G., Frost, B.R. and Bucher, K. (1998) The origin of anorthosites and related rocks from the Lofoten islands, Northern Norway: I. Field relations and estimat ion of intrinsi c variables. Journal of Petrology, 39, 14251452.CrossRefGoogle Scholar
Markl, G., Marks, M., Schwinn, G. and Sommer, H. (2001a)) Phase equilibrium constraints on intensive crystal lizatio n parame ters of the Ilõ´maussaq Complex, South Greenland. Journal of Petrology, 42, 22312258.CrossRefGoogle Scholar
Markl, G., Marks, M. and Wirth, R. (2001b)) The influence of T, aSiO2, fO2 on exsolution textures in Fe-Mg olivine: an example from augite syenite of the Ilõ´maussaq Intrusion, South Greenland. American Mineralogist, 86, 3646.CrossRefGoogle Scholar
Marks, M. and Markl, G. (2001) Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilõ´maussaq Intrusion, South Greenland, as deduced from phase equilibria. Journal of Petrology, 42, 19471969.CrossRefGoogle Scholar
Marks, M., Vennemann, T., Siebel, W. and Markl, G. (2003) Quanti. cation of magmatic and hydrothermal processes in a peralkaline syenite – alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. Journal of Petrology, 44, 12471280.CrossRefGoogle Scholar
Marsh, J.S. (1975) Aenigmatite stability in silicaundersaturated rocks. Contributions to Mineralogy and Petrology, 50, 135144.CrossRefGoogle Scholar
Mingram, B., Trumbull, R.B., Littman, S. and Gerstenberger, H. (2000) A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos, 54, 122.CrossRefGoogle Scholar
Nicholls, J. and Carmichael, I.S.E. (1969) Peralkaline acid liquids: A petrological study. Contributions to Mineralogy and Petrology, 20, 268294.CrossRefGoogle Scholar
Parsons, I., Mason, R.A., Becker, S.M. and Finch, A.A. (1991) Biotite equilibria and fluid circulation in the Klokken Intrusion. Journal of Petrology, 32, 12991333.CrossRefGoogle Scholar
Peacock, S.M. (1989) Thermal modeling of metamorphic pressure-time-temperature paths: a forward approach. Pp. 57112 in. Metamorphic Pressure- Time-Temperature Paths. Short Course in Geology, (Spear, F.S. and Peackock, S.M., editors). American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
Philpotts, A.R. (1990) Principles of Igneous and Metamorphic Petrology. Prentice Hall, New Jersey, USA, 498 pp.Google Scholar
Piotrowski, J.M. and Edgar, A.D. (1970) Melting relations of undersaturated alkaline rocks from South Greenland. Meddelser om Grønland, 181, 62.Google Scholar
Poulsen, V. (1964) The sandstones of the Precambrian Eriksfjord Formation in South Greenland. Rapport Grønlands Geologiske Undersøgelse, 2, 16.Google Scholar
Salvi, S. and Williams-Jones, A.E. (1990). The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 54, 24032418.CrossRefGoogle Scholar
Scaillet, B. and MacDonald, R. (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. Journal of Petrology, 42, 825845.CrossRefGoogle Scholar
Scharbert, H.G. (1967) Microsyenitic dykes from the northern part of the Ilõ´maussaq Peninsula, Southern Gre enl a nd. Tsch ermak s Miner alogi e un d Petrographische Mitteillungen, 12, 443462.CrossRefGoogle Scholar
Schmitt, A.K., Emmermann, R., Trumbull, R.B., Bu¨hn, B. and Henjes-Kunst, F. (2000) Petrogenesis and 40Ar/39Ar geochronology of the Brandberg Complex, Namibia: Evidence for a major mantle contribution in metaluminous and peralkaline granites. Journal of Petrology, 41, 12071239.CrossRefGoogle Scholar
Sharp, Z.D., Helffrich, G.R., Bohlen, S.R. and Essene, E.J. (1989) The stability of sodalite in the system NaAlSiO4-NaCl. Geochimica et Cosmochimica Acta, 53, 19341954.CrossRefGoogle Scholar
Sood, M.K. and Edgar, A.D. (1970) Melting relations of undersatu rated alkaline rocks. Meddelser om Grønland, 181, 41.Google Scholar
Sørensen, H. (1992) Agpaitic nepheline syenites: a potent ial sour ce of rare elements. Applied Geochemistry, 7, 417427.CrossRefGoogle Scholar
Sørensen, H. (1997) The agpaitic rocks – an overview. Mineralogical Magazine, 61, 485—49.CrossRefGoogle Scholar
Späth, A., Le Roex, A.P. and Opiyo-Akech, N. (2001) Plume-lithosphere interaction and the origin of continenta l rift-relat ed alkaline volcanism-the Chyulu hills volcanic province, Southern Kenya. Journal of Petrology, 42, 765787.CrossRefGoogle Scholar
Stephenson, D. (1974) Mn and Ca enriched olivines from nepheline syenites of the South Qoroq Centre, south Greenland. Lithos, 7, 3541.CrossRefGoogle Scholar
Stevenson, R., Upton, B.G.J. and Steenfelt, A. (1997) Crust-mantle interaction in the evolution of the Ilõ´maussaq Complex, South Greenland: Nd isotopic studies. Lithos, 40, 189202.CrossRefGoogle Scholar
Stormer, J.C. (1972) Calcium zoning in olivine and its relationship to silica activity and pressure. Geochimica et Cosmochimica Acta, 37, 18151821.CrossRefGoogle Scholar
Upton, B.G.J. and Blundell, D.J. (1978) The Gardar igneous province: evidence for Proterozoic continental rifting. Pp. 163172 in. Petrology and Geochemistry of Continental Rifts, (Neumann, E.R. and Ramberg, I.B., editors).CrossRefGoogle Scholar
NATO Advanced Study Institute Series C: Mathematical and Physical Sciences. Reidel Publishing Company, Dordrecht, The Netherlands.Google Scholar
Upton, B.G.J. and Emeleus, C.H. (1987) Mid- Proterozoic alkaline magmatism in southern Greenland: the Gardar province. Pp. 449471 in: The Alkaline Rocks (Fitton, J.G. and Upton, B.G.J., editors). Blackwell Scientific, Boston.Google Scholar
Upton, B.G.J. and Fitton, J.G. (1985) Gardar dykes north of the Igaliko syenite complex, southern Greenland. Rapport Grønlands Geologiske Undersøgelse, 127, 24.Google Scholar
Upton, B.G.J., Emeleus, C.H., Heaman, L.M., Goodenough, K.M. and Finch, A.A. (2003) Magmat ism of the mid-Protero zoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos,, 68, 4365.CrossRefGoogle Scholar
Ussing, N.V. (1912) Geology of the country around Julianehaab, Greenland. Meddelelser om Grønland, 38, 426.Google Scholar
Vazquez, J.A. and Reid, M.R. (2002) Time scales of magma storage and differentiation of voluminous high-sil ica rhyolite s at Yellowstone caldera, Wyoming. Contributions to Mineralog y and Petrology, 144, 274285.CrossRefGoogle Scholar
Watt, W.S. (1968) Petrology and Geology of the Precambrian Gardar Dykes on Qaersuarssuk, South Greenland. Rappo rt Grønland s Geologisk e Undersøgelse, 14, 51.Google Scholar