Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:54:43.987Z Has data issue: false hasContentIssue false

In situ high temperature single crystal X-ray diffraction study of a natural omphacite

Published online by Cambridge University Press:  05 July 2018

A. Pavese*
Affiliation:
Dipartimento Scienze della Terra-Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy National Research Council, Centro di Studio per la geodinamica alpina e quaternaria, Via Botticelli 23, 20133 Milano, Italy
R. Bocchio
Affiliation:
Dipartimento Scienze della Terra-Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy
G. Ivaldi
Affiliation:
Dipartimento Scienze Mineralogiche e Petrologiche-Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy

Abstract

In situ high temperature single crystal X-ray diffraction (XRD) experiments have been performed on a chemically quasi-ideal omphacite sample up to 1000°C. The lattice parameters were studied as a function of temperature, and their thermal expansion coefficients determined. The b and c cell edges show discontinuities as a function of temperature which are interpreted here in terms of intracrystalline cation diffusion processes. Structure refinements have been carried out using data collected at room temperature, at 800°C and at ambient conditions after cooling. The structural behaviour as a function of temperature of chemically quasi-ideal omphacites is compared with those of jadeite and diopside.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, L.P., Bancroft, G.M., Fleet, M.E. and Herzberg, C.T. (1978) Omphacite studies, II. Mössbauer spectra of C2/c and P2/n omphacites. Amer. Mineral., 63, 1107–15.Google Scholar
Argoud, R. and Capponi, J.J. (1984) Soufflette a haute temperature pour l’etude de monocristaux aux rayons X et aux neutrons jusqu’a 1400 K. J. Appl. Crystallogr., 17, 420–5.CrossRefGoogle Scholar
Bocchio, R., Liborio, G. and Mottana, A. (1985) Petrology of the amphibolitized eclogites of Gorduno, Lepontine Alps, Switzerland. Chem. Geol., 50, 65–8.CrossRefGoogle Scholar
Boffa Ballaran, T., Carpenter, M.A., Domeneghetti, M.C. and Tazzoli, V. (1997) Hard mode infrared spectroscopy of cation ordering and substitution in a chain silicate. Phase Transitions, 63B, 159–70.CrossRefGoogle Scholar
Boffa Ballaran, T., Carpenter, M.A., Domeneghetti, M.C. and Tazzoli, V. (1998 a) Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes: I. A macroscopic perspective. Amer. Mineral., 83, 419–33.CrossRefGoogle Scholar
Boffa Ballaran, T., Carpenter, M.A., Domeneghetti, M.C., Salje, E.K.H. and Tazzoli, V. (1998 b) Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes: II. A microscopic perspective. Amer. Mineral., 83, 434–50.CrossRefGoogle Scholar
Camara, F., Nieto, F. and Oberti, R. (1998) Effects of Fe2+ and Fe3+ contents on cation ordering in omphacite. Eur. J. Mineral., 10, 889906.CrossRefGoogle Scholar
Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J.J. (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Amer. Mineral., 58, 594618.Google Scholar
Carpenter, M.A. (1980) Mechanisms of exsolution in sodic pyroxenes. Contrib. Mineral. Petrol., 71, 289300.CrossRefGoogle Scholar
Carpenter, M.A. (1981) Time- Temperature- Transformation (TTT) analysis of cation disordering in omphacite. Contrib. Mineral. Petrol., 78, 433–40.CrossRefGoogle Scholar
Carpenter, M.A. and Smith, D.C. (1981) Solid solution and cation ordering limits in high temperature sodic pyroxenes from the Nybö eclogite pod, Norway. Mineral. Mag., 44, 3744.CrossRefGoogle Scholar
Carpenter, M.A., Domeneghetti, M.C. and Tazzoli, V. (1990 a) Application of Landau theory to cation ordering in omphacite I: equilibrium behaviour. Eur. J. Mineral., 2, 718.CrossRefGoogle Scholar
Carpenter, M.A., Domeneghetti, M.C. and Tazzoli, V. (1990 b) Application of Landau theory to cation ordering in omphacite II: kinetic behaviour. Eur. J. Mineral., 2, 19-28.Google Scholar
Carpenter, M.A., Powell, R. and Salje, E. (1994) Thermodynamics of non-convergent ordering in minerals : I. An alternat ive approach. Amer. Mineral., 79, 1053–67.Google Scholar
Clark, J.R. and Papike, J.J. (1968) Crystal-chemical characterization of omphacites. Amer. Mineral., 53, 840–68.Google Scholar
Cohen, R.E. (1986) Configurational thermodynamics of aluminous pyroxenes: a generalized pair approximation. Phys. Chem. Min., 13, 183–97.CrossRefGoogle Scholar
Davidson, P.M. and Burton, B.P. (1987) Order-disorder in omphacitic pyroxenes: a model for coupled substitution in the point approximation. Amer. Mineral., 72, 337–44.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-forming Minerals. John Wiley and Sons, New York.Google Scholar
Fleet, M.E., Herzberg, C.T., Bancroft, G.M. and Aldridge, L.P. (1978) Omphacite studies I. The P2/n→C2/ctransformation. Amer. Mineral., 63, 1100–6.Google Scholar
Larson, A.C. and Von Dreele, R.B. (1987) GSAS: General Structure Analysis System. Los Alamos National Laboratory, Report LAUR:86-87.Google Scholar
Matsumoto, T., Tokonami, M. and Morimoto, N. (1975) The crystal structure of omphacite. Amer. Mineral., 60, 634–41.Google Scholar
Mottana, A. (1986) Crystal-chemical evaluation of garnet and omphacite microprobe analyses: its bearing on the classification of eclogites. Lithos, 19, 171–86.CrossRefGoogle Scholar
Mottana, A., Murata, T., Wu, Z.Y., Marceli, A. and Paris, E. (1997) The local structure of Ca-Na pyroxenes. 1. XANES at the Na K-edge. Phys. Chem. Min., 24, 500–9.CrossRefGoogle Scholar
North, A.C.T., Phillips, D.C. and Mathews, F.S. (1968) A semi-empirical method of absorption correction. Acta Crystallogr., A24, 351–9.CrossRefGoogle Scholar
Pavese, A., Ferraris, G., Pischedda, V. and Mezouar, M. (1999 a) Synchrotron powder diffraction study of phengite 3T from the Dora Maira massif: p-V-T equation of state and petrological consequences. Phys. Chem. Min., 26, 460–7.CrossRefGoogle Scholar
Pavese, A., Ferraris, G., Pischedda, V. and Ibberson, R. (1999 b) Tetrahedral order in phengite 2M1 upon heating, from powder neutron diffraction, and thermodynamic consequences. Eur. J. Miner., 11, 309–20.CrossRefGoogle Scholar
Phakey, P.P. and Ghose, S. (1973) Direct observation of anti-phase domain structure in omphacite. Contrib. Mineral. Petrol., 39, 239–45.CrossRefGoogle Scholar
Rossi, G., Smith, D.C., Ungaretti, L. and Domeneghetti, M.C. (1983) Crystal-chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contrib. Mineral. Petrol., 83, 247–58.CrossRefGoogle Scholar
Vinet, P., Smith, J.R. and Rose, J.H. (1987) Temperature effects on the universal equation of state of solids. Phys. Rev. B, 35, 1945–53.CrossRefGoogle ScholarPubMed
Yamanaka, T. and Takeuchi, Y. (1983) Order-disorder transition in MgAl2O4 spinel at high temperature upto 1700°C. Zeits. Kristallogr., 165, 6578.CrossRefGoogle Scholar