Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T18:15:59.476Z Has data issue: false hasContentIssue false

The kinetics and reaction mechanism of the goethite to hematite transformation

Published online by Cambridge University Press:  05 July 2018

C. J. Goss*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing St., Cambridge CB2 3EQ

Abstract

A complete mechanism for the transformation goethite to hematite based upon the results of thermogravimetric, transmission electron microscope and X-ray diffraction investigations is presented. A porous microstructure and hematite crystallites in twin orientation are found to develop during transformation. For the main part of the transformation, and at higher temperatures, the reaction is controlled by a two-dimensional phase boundary. Activation energies of 169 ± 8 kJ/mole (for an ore mineral) and 154 ± 15 kJ/mole (for a recent sedimentary goethite) were obtained for this part of the transformation. At early stages and lower temperatures, the mechanism is one of proton/iron transfer across the reaction interface. Important goethite characteristics are grain size, shape, crystallinity and excess water content. The activation energy is found to depend upon temperature and degree of dehydration.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, M.C., and Taylor, H.F.W. (1961) Mineral. Mag. 32, 75466.Google Scholar
Blaźek, A. (1973) Thermal Analysis, van Nostrand, London.Google Scholar
Brindley, G.W., and Brown, G. (1980) Crystal Structures of Clay Minerals and their Identification, Mineralogical Society, London.CrossRefGoogle Scholar
Brown, M.E., Dollimore, D., and Galwey, A.K. (1980) Comprehensive Chemical Kinetics. Elsevier, Amsterdam. vol. 22.Google Scholar
Burke, J. (1965) The Kinetics of Phase Transformations in Metals. Pergamon Press, Glasgow.Google Scholar
Coats, A.W., and Redfern, J.P. (1964) Natur. 201, 66-9.CrossRefGoogle Scholar
Cornell, R.M., and Mann, S. (1983) J. Chem. Soc. Faraday Trans. 1, 79, 2679-84.Google Scholar
Criado, J.M., Ortega, A., Real, C., and Torres de Torres, (1984) Clay Minerals, 19, 653-61.CrossRefGoogle Scholar
Derie, R., Ghodsi, M., and Cairo-Roche, C. (1976) J. Therm. Anal. 9. 435-40.CrossRefGoogle Scholar
Fey, M.V., and Dixon, J.B. (1981) Clays Clay Minerals. 29, 91100.CrossRefGoogle Scholar
Galwey, A.K. (1982) In Thermal Analysis (Miller, B., ed.) Wiley and Sons, 3853.Google Scholar
Garcia-Gonzalez, M-L., Grange, P., and Delmon, B. (1975) C.R. Acad. Sci. Pari. 280, 1439-41.Google Scholar
Geith, M.A. (1952) Am. J. Sci. 250, 67795.Google Scholar
Keller, P. (1976) Neues Jahrb. Mineral. Mh.115-27.Google Scholar
Langmuir, D. (1971) Am. J. Sci. 271, 14756. (1972) Ibid. 272, 972.CrossRefGoogle Scholar
Lima-de-Faria, J. (1963) Z. Kristallogr. 119, 176203.CrossRefGoogle Scholar
Murad, E. (1979) Mineral. Mag. 43, 355-61.CrossRefGoogle Scholar
Murray, J.W. (1979) In Marine Minerals(Burns, R.G., ed.) Mineral. Soc. Am. 49-98.Google Scholar
Pollack, J.B., Pitman, D, Khare, N., and Sagan, C. (1970a) J. Geophys. Res. 75, 7480-90.CrossRefGoogle Scholar
Wilson, R.N., and Goles, G.G. (1970b) Ibid. 75, 7491500.Google Scholar
Schulze, D.G. (1982) Ph.D. Thesis, Tech. Univers. München.Google Scholar
Schwertmann, U. (1984) Thermochim. Acta, 78, 39-46.CrossRefGoogle Scholar
Thrierr-Sorel, A., Larpin, J-P., and Mougin, G. (1978) Annal. Chim. 3, 305-15.Google Scholar
van Oosterhout, G.W. (1965) Proc. 5th Int. Conf. Mag netism Nottingham 1964(Phys. Soc. London, 1965) 529-32.Google Scholar
Watari, F., van Landuyt, J., Delavignelle, R., andAmelinckx, S. (1979) J. Solid State Chem. 29, 13750, 417-27.Google Scholar
Watari, F., van Landuyt, J., Delavignelle, R., andAmelinckx, S. and Igata, N. (1982) Phys. Stat. Sol. 73, 215-24.CrossRefGoogle Scholar
Watari, F., van Landuyt, J., Delavignelle, R., andAmelinckx, S. (1983) J. Solid State Chem. 48, 49-64.CrossRefGoogle Scholar
Wilson, S.J., McConnell, J.D.C., and Stacey, M.H. (1980) J. Mat. Sci. 19c, 3081-90.CrossRefGoogle Scholar