Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T21:46:33.516Z Has data issue: false hasContentIssue false

Lithium in carbonatites — consequence of an enriched mantle source?

Published online by Cambridge University Press:  05 July 2018

Alan F. Cooper
Affiliation:
Department of Geology, University of Otago, Dunedin, New Zealand
Lorraine A. Paterson
Affiliation:
Department of Geology, University of Otago, Dunedin, New Zealand
David L. Reid
Affiliation:
Department of Geological Sciences, University of Cape Town, Rondebosch 7700, South Africa

Abstract

The rare Li-mica taeniolite is described from the Dicker Willem carbonatite complex, Namibia, and from the Alpine carbonatitic lamprophyre dyke swarm at Haast River, New Zealand. At Haast River, taeniolite occurs in sodic and ultrasodic fenites derived from quartzo-feldspathic schists and rarely in metabasites, adjacent to dykes of tinguaite, trachyte and a spectrum of carbonatites ranging from Ca- to Fe- rich types. In Namibia, taeniolite is present in potassic fenites derived from quartz-feldspathic gneisses and granitoids at the margin of an early sövite phase of the complex and in a radial sövite dyke emanating from this centre.

The occurrence of taeniolite in these totally disparate carbonatite complexes, together with examples of lithian mica from other carbonatite complexes worldwide, raises the question of the status of Li as a ‘carbonatitic element’. We argue that lithium is not a consequence of crustal assimilation or interaction, but reflects the geochemical character of the magmatic source. Li, an overlooked and little-analysed element, may be an integral part of metasomatic enrichment in the mantle, and of magmas derived by partial melting of such a source.

Type
Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, S. (1983) Studies in ‘standard samples’ of silicate rocks and minerals 1969-1982. Geological Survey of Canada, Paper 83 — 15.CrossRefGoogle Scholar
Bailey, J.C. and Gworzdz, R. (1978) A low-Li geochemical province in the NE Atlantic. Lithos, 11, 73–84.CrossRefGoogle Scholar
Bailey, J.C. and Gworzdz, R. (1994) Li distribution in aegirine lujavrite, Ilimaussaq alkaline intrusion, south Greenland: role of cumulus and post-cumulus processes. Lithos, 31, 207–25.CrossRefGoogle Scholar
Barreiro, B.A. and Cooper, A.F. (1987) A Sr, Nd, and Pb isotope study of alkaline lamprophyres and related rocks from Westland and Otago, South Island, New Zealand. In Mantle Metasomation and Alkaline Magmatism. (Morris, E.M. and Pasteris, J.D., eds.), Geol. Soc. Amer. Sp. Pap., 215, 115–25.CrossRefGoogle Scholar
Benoit, P.H. (1987) Adaption to microcomputer of the Appleman-Evans program for indexing and least-squares refinement of powder-diffraction data for unit-cell dimensions. Amer. Mineral., 72, 1018–19.Google Scholar
Bowden, P. (1962) Trace elements in Tanganyika carbonatites. Nature, 196, 570.CrossRefGoogle Scholar
Cooper, A.F. (1971) Carbonatites and fenitization associated with a lamprophyric dike swarm intrusive into schists of the New Zealand geosyncline. Geol. Soc. Amer. Bull, 82, 1327–39.CrossRefGoogle Scholar
Cooper, A.F. (1986) A carbonatitic lamprophyre dike swarm from the Southern Alps, Otago and Westland. In Late Cenozoic volcanism in New Zealand. (Smith, I.E.M., ed.), Royal Society of New Zealand Bulletin, 23, 313–36.Google Scholar
Cooper, A.F. (1988) Geology of Dicker Willem, a subvolcanic carbonatite complex in south-west Namibia. Communs. Geol. Surv. S.W. Africa/ Namibia, 4, 3–12.Google Scholar
Cooper, A.F. and Reid, D.L. (1991) Textural evidence for calcite carbonatite magmas, Dicker Willem, Southwest Namibia. Geology, 19, 1193–6.2.3.CO;2>CrossRefGoogle Scholar
Cooper, A.F., Barreiro, B.A., Kimbrough, D.L. and Mattinson, J.M. (1987) Lamprophyre dyke intrusion and the age of the Alpine Fault, New Zealand. Geology, 15, 941–4.2.0.CO;2>CrossRefGoogle Scholar
Deans, T. (1981) Mineral production from carbonatite complexes: a world review. Anais do i Simposio Internacional de Carbonatitos, Brasil 1976, 123–33.Google Scholar
Donaldson, C.H., Dawson, J.B., Kariaris-Sotiriou, R., Batchelor, R.A. and Walsh, N.J. (1987) The silicate lavas of Oldoinyo Lengai, Tanzania. Neues Jahrb. Mineral. Abh., 156, 247–79.Google Scholar
Erd, R.C., Czamanske, G.K. and Meyer, C.E. (1983) Taeniolite an uncommon lithium-mica from Coyote Peak, Humboldt County, California. Mineral. Record, 14, 39–40.Google Scholar
Eremenko, G.K. and Val'ter, A.A. (1963) Accessory taeniolite from alkaline metasomatites of the Azov region. Zap. Vses. Mineral. Obshch., 92, 599–601. (in Russian).Google Scholar
Eriksson, S.C. (1989) Phalaborwa: a saga of magma-tism, metasomatism, and miscibility. In Carbonatites: Genesis and Evolution (Bell, K., ed.) Unwin Hyman, London, 221-54.Google Scholar
Fick, L.J. and Van der Heyde, C. (1959) Additional data on the geology of the Mbeya carbonatite. Econ. Geol., 54, 842–72.CrossRefGoogle Scholar
Flink, G. (1901) Taeniolite. Medd. om Gronland, 24, 115–20.Google Scholar
Garson, M.S. (1963) The Tundulu carbonatite ring complex of southern Nyasaland. Malawi Geol. Surv. Mem., 2. Google Scholar
Gerasimovsky, V.V. (1965) Taeniolite from carbonate formations and albitites. Trudy Mineral. Muzeya Akad. Nauk SSSR, 16, 215–8. (in Russian).Google Scholar
Gerasimovsky, V.V. (1978) Geochemistry of the carbonatites of the East African rift zone. In: Proc. 1st Intern. Symp. Carbonatites, Pocos de Caldas, Minas Gerais, Brazil. Ministerio das Minas e Energia, 188, 207–12.Google Scholar
Gold, D.P. (1966) The average and typical chemical composition of carbonatites. Min. Soc. India, IMA Volume, 83-91.Google Scholar
Haggerty, S.E. (1989) Mantle metasomes and the kinship between carbonatites and kimberlites. In Carbonatites: Genesis and Evolution (Bell, K., ed.) Unwin Hyman, London, 546-60.Google Scholar
Hartman, G and Wedepohl, K.H. (1990) Metasomati-cally altered peridotite xenoliths from the Hessian Depression (northwest Germany). Geochim. Cosmo-chim. Ada, 54, 71–86.CrossRefGoogle Scholar
Heinrich, E.W. (1966) The Geology of Carbonatites, Rand McNally & Co., Chicago, 555pp.Google Scholar
Hervig, R.L., Smith, J.V. and Dawson, J.B. (1986) Lherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinel. Trans. R. Soc. Edin., Eth. Sci.,, 11 181-201.Google Scholar
Jones, A.P. (1989) Upper-mantle enrichment by kimberlitic or carbonatitic magmatism. In Carbonatites: Genesis and Evolution (Bell, K., ed.) Unwin Hyman, London, 448-63.Google Scholar
Kogarko, L.N. (1993) Geochemical characteristics of oceanic carbonatites from the Cape Verde Islands. S. Afr.J. Geol., 96, 119–25.Google Scholar
Le Bas, M.J. (1981) Carbonatite magmas. Mineral. Mag., 44, 133–40.CrossRefGoogle Scholar
Le Bas, M.J., Keller, J., Kejie, T., Wall, F., Williams, C.T. and Zhang Peishan. (1992) Carbonatite dykes at Bayan Obo, Inner Mongolia, China. Mineral. Petrol., 46, 195–228.CrossRefGoogle Scholar
Liotard, J.M., Maluski, H. and Dautria, J.M. (1991) Evidence for an Eocene alkali magmatic activity in Languedoc (southern France): the ‘Montagne de la Moure’ volcanic breccia. Bull. Soc. Geol. Fr., 162, 1067–7.Google Scholar
Mandarino, J.A. and Anderson, V. (1989) Monteregian treasures: the minerals of Mont Saint-Hilaire, Quebec. Cambridge University Press, Cambridge, 281 pp.Google Scholar
McLemore, V.T. (1987) Geology and regional implica-tions of carbonatites in the Lemitar Mountains, central New Mexico. J. Geol., 95, 255–70.CrossRefGoogle Scholar
Meen, J.K., Ayers, J.C. and Fregeau, E.J. (1989) A model of mantle metasomatism by carbonated alkaline melts:Trace-element and isotopic composi-tions of mantle source regions of carbonatite and other continental igneous rocks. In Carbonatites: Genesis and Evolution (Bell, K., ed.) Unwin Hyman, London, 464-99.Google Scholar
Miller, J.L. and Johnson, R.C. (1962) The synthesis and properties of a fluormica, intermediate between fluortaeniolite and fluorhectorite. Amer. Mineral., 47, 1049–54.Google Scholar
Miser, H.D. and Stevens, R.E. (1938) Taeniolite from Magnet Cove, Arkansas. Amer. Mineral., 23, 104–10.Google Scholar
Palabora Mining Company Limited. (1976) The geology and the economic deposits of copper, iron and vermiculite in the Palabora Igneous Complex: a brief review. Econ. Geol., 71, 177–92.CrossRefGoogle Scholar
Paterson, L.A. (1992) A study of carbonatites and associated fenitisation at Haast River, south West-land, New Zealand. Unpublished PhD thesis, University of Otago Library, 440 pp.Google Scholar
Pyatenko, I.K. and Osokin, E.D. (1988) Geochemical characteristics of the Kontozero carbonatite paleo-volcano, Kola Peninsula [USSR]. Geokhimiya, 5, 723-37 (in Russian).Google Scholar
Reid, D.L., Cooper, A.F., Rex, D.C. and Harmer, R.E. (1990) Timing of post-Karoo alkaline volcanism in southern Namibia. Geol. Mag., 127, 427–33.CrossRefGoogle Scholar
Rumyantseva, E.V., Mishchenko, K.S. and Kalinicheva, L.L. (1984) Taeniolite and chromium-vanadium micas in metasomatites of Karelia. Tap. Vses. Mineral. Obshch., 113, 68–75. (in Russian) [M.A. 85M-0742].Google Scholar
Ryan, J.G. and Langmuir, C.H. (1987) The systematics of lithium abundance in young volcanic rocks. Geochim. Cosmochim. Ada, 51, 1727–41.CrossRefGoogle Scholar
Secher, K. and Larsen, L.M. (1980) Geology and mineralogy of the Sarfartoq carbonatite complex, southern West Greenland. Lithos, 13, 199–212.CrossRefGoogle Scholar
Semenov, E.I. (1959) Lithium-bearing and other micas and hydromicas in the alkali pegmatite of Kola Peninsula. Trans. Min. Mus. Acad. Sci. USSR, 9, 107-37 (in Russian).[M.A. 14, 499]Google Scholar
Smith, A.E. (1989) Minerals from mariolitic cavities at the Diamond Jo quarry, Magnet Cove, Hot Springs County, Arkansas. Rocks and Minerals, 64, 300–307.CrossRefGoogle Scholar
Stone, C.G. and Milton, C. (1976) Lithium mineralization in Arkansas. In Lithium Resources and Requirements by the year 2000 (Vine, J.D., ed.) Geol. Surv. Prof. Paper 1005.Google Scholar
Vaselli, O and Conticelli, S. (1990) Boron, cesium and lithium distribution in some alkaline potassic volcanics from central Italy. Mineral. Petrogr. Ada, 33, 189–204.Google Scholar
Vlasov, K.A., Kuz'menko, M.V. and Es'kova, E.M. (1959) Lovozero alkaline massif (rocks, pegmatites, mineralogy, geochemistry and genesis). Izv. Akad. Nauk SSSR, 623 pp. (in Russian).Google Scholar
Woolley, A.R. (1969) Some aspects of fenitization with particular reference to Chilwa Island and Kangan-kunde, Malawi. Bull. British Mus. Nat. Hist. Min., 2, 189–219.Google Scholar
Woolley, A.R. (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Mineral. Mag., 46, 13–17.CrossRefGoogle Scholar
Woolley, A.R and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In Carbonatites: Genesis and Evolution (Bell, K., ed.) Unwin Hyman, London, 1-14.Google Scholar