Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T05:39:37.046Z Has data issue: false hasContentIssue false

Manganoarrojadite-(KNa), KNa5MnFe13Al(PO4)11(PO3OH)(OH)2, a new arrojadite-group mineral from the Palermo No. 1 mine, New Hampshire, USA

Published online by Cambridge University Press:  11 November 2020

Inna Lykova*
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station ‘D’, Ottawa, Ontario K1P 6P4, Canada
Ralph Rowe
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station ‘D’, Ottawa, Ontario K1P 6P4, Canada
Glenn Poirier
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station ‘D’, Ottawa, Ontario K1P 6P4, Canada
Kate Helwig
Affiliation:
Canadian Conservation Institute, 1030 Innes Road, Ottawa, Ontario K1B 4S7, Canada
Henrik Friis
Affiliation:
Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo N-0318, Norway
*
*Author for correspondence: Inna Lykova, Email: ilykova@nature.ca

Abstract

A new arrojadite-group mineral manganoarrojadite-(KNa), ideally KNa5MnFe13Al(PO4)11(PO3OH)(OH)2, was found in a phosphate-bearing granite pegmatite at the Palermo No. 1 mine, New Hampshire, USA. It forms anhedral grains up to 1 × 1.5 cm in size combined in aggregates with vivianite, goyazite, quartz and calcite. The mineral is olive green with a pale green streak and vitreous to greasy lustre. The cleavage is good in one direction. The Mohs hardness is 4½. Dcalc is 3.53 g/cm3. Manganoarrojadite-(KNa) is optically biaxial (–), α = 1.658(2), β = 1.666(2), γ = 1.670(2), 2Vmeas. = 67(1)° and 2Vcalc. = 70° (589 nm). The infrared spectrum is reported. The composition (wt.%) is Na2O 6.97, K2O 1.78, CaO 0.31, MgO 2.17, MnO 12.30, FeO 31.17, Al2O3 2.43, P2O5 40.48, F 0.30, H2O 1.32, O = F2 –0.13, total 99.10. The empirical formula calculated on the basis of 12 P and (O+OH+F) = 50 apfu is Na4.73K0.80Ca0.12Mg1.13Mn2+3.65Fe2+9.13Al1.00P12.00O46.59OH3.08F0.33. The ideal structural formula is A1KA2NaB1NaB2NaNa1,2Na2Na3CMnMFe13Al(PO4)11(PO3OH)W(OH)2. The mineral is monoclinic, Cc, a = 16.5345(3), b = 10.0406(2), c = 24.6261(5) Å, β = 105.891(2)°, V = 3932.09(14) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 5.902(24)(202), 5.025(24)(020), 3.208(47)(206,$\;\bar{1}$32), 3.048(100)($\bar{5}$14,$\bar{4}$24), 2.758(24)($\bar{6}$02) and 2.704(70)(226). The crystal structure, refined from single-crystal X-ray diffraction data (R1 = 0.025), is of the arrojadite structure type. Manganoarrojadite-(KNa) is the first arrojadite-group mineral with Mn dominant on the site usually occupied by Ca and without Ca as the dominant cation at any cation site.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Brese, N.E. and O`Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Cámara, F., Oberti, R., Chopin, C. and Medenbach, O. (2006) The arrojadite enigma: I. A new formula and a new model for the arrojadite structure. American Mineralogist, 91, 12491259.CrossRefGoogle Scholar
Cámara, F., Bittarello, E., Ciriotti, M.E., Nestola, F., Radica, F., Massimi, F. and Bracco, R. (2019) Fluorcarmoite-(BaNa), the first Mg-dominant mineral of the arrojadite group. European Journal of Mineralogy, 31, 823836.CrossRefGoogle Scholar
Chopin, C., Oberti, R. and Cámara, F. (2006) The arrojadite enigma: II compositional space, new members, and nomenclature of the group. American Mineralogist, 91, 12601270.CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer International Publishing, Cham, Switzerland, 1109 pp.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Radica, F., Chopin, C. and Oberti, R. (2014) The arrojadite enigma III. The incorporation of volatiles: a polarised FTIR spectroscopy study. European Journal of Mineralogy, 26, 679688.CrossRefGoogle Scholar
Huvelin, P., Orliac, M. and Permingeat, F. (1972) Arrojadite baryfère de Sidi-bou-Kricha (Jebilet, Maroc) et composition chimique des arrojadites et dickinsonites. Notes du Service Géologique du Maroc, 32, 5166.Google Scholar
Lykova, I., Rowe, R., Poirier, G., Friis, H. and Helwig, K. (2020) Manganoarrojadite-(KNa), IMA 2020-003. CNMNC Newsletter No. 55; Mineralogical Magazine, 84, 485488, https://doi.org/10.1180/mgm.2020.39Google Scholar
Nespolo, M. and Ferraris, G. (2000) Twinning by syngonic and metric merohedry. Analysis, classification and effects on the diffraction pattern. Zeitschrift für Kristallographie, 215, 7781.Google Scholar
Pasero, M. (2020) The New IMA List of Minerals - Updated list of IMA-approved minerals (September 2020). Available online: http://cnmnc.main.jp [accessed on 24 September 2020].Google Scholar
Rowe, R. (2009) New statistical calibration approach for Bruker AXS D8 Discover microdiffractometer with Hi-Star detector using GADDS software. Powder Diffraction, 24, 263271.CrossRefGoogle Scholar
Segeler, C.G., Ulrich, W., Kampf, A.R. and Whitmore, R.W. (1981) Phosphate minerals of the Palermo No.1 pegmatite. Rocks and Minerals, 56, 196214.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Števko, M., Sejkora, J., Uher, P., Cámara, F., Škoda, R., Vaculovič, T. (2018) Fluorarrojadite-(BaNa), BaNa4CaFe13Al(PO4)11(PO3OH)F2, a new member of the arrojadite group from Gemerská Poloma, Slovakia. Mineralogical Magazine, 82, 863876.CrossRefGoogle Scholar
Vignola, P., Hatert, F., Baijot, M., Dal Bo, F., Andò, S., Bersani, D., Pavese, A., Risplendente, A. and Vanini, F. (2016) Arrojadite-(BaNa), BaNa3(Na,Ca)Fe2+13Al(PO4)11(PO3OH)(OH)2, a new phosphate mineral from the Luna albite pegmatite, Dorio Commune, Lecco Province, Italy. The Canadian Mineralogist, 54, 10211032.CrossRefGoogle Scholar
Whitmore, R.W. and Lawrence, R.C. Jr. (2004) The Pegmatite Mines Known as Palermo. Friends of Palermo Mines, Weare, NH, USA 213 pp.Google Scholar
Supplementary material: File

Lykova et al. supplementary material

Lykova et al. supplementary material

Download Lykova et al. supplementary material(File)
File 121.4 KB