Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T06:15:42.940Z Has data issue: false hasContentIssue false

A method of tracing the temperature and oxygen-fugacity histories of complex magnetite-ilmenite grains

Published online by Cambridge University Press:  05 July 2018

John F. W. Bowles*
Affiliation:
Department of Geology, University College, London EC1E 6BT

Summary

The formation of ilmenite from titanomagnetite frequently shows separate generations of production. The ilmenite products can be combined with the magnetite host to represent the intermediate stages in this development. Use of the Buddington and Lindsley (1964) geothermometer in conjunction with this method provides a number of points in the temperature and oxygen-fugacity history of a single, complex magnetiteilmenite grain.

Application of the method is illustrated by an example from the Freetown layered gabbro. A titanomagnetite exsolved granular ilmenite whilst cooling and this process ceased at 930° and an oxygen fugacity of log ƒO2 = −11·5. Further cooling and exsolution continued until the grain reached 662 °C and log ƒO2 = −19·0, producing distinct ilmenite lamellae.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Institute of Geological Sciences, 64-78 Gray's Inn Road, London WC1X 8NG.

References

Anderson, (A. T. Jr.), 1968. J. Geol. 76, 528–47 [M.A. 72-2835].CrossRefGoogle Scholar
Bowles, (J. F. W.), 1975. Rep. Inst. Geol. Sci. 75/9.Google Scholar
Bowles, (J. F. W.), 1976. Mineral. Mag. 40, 703.CrossRefGoogle Scholar
Buddington, (A. F.), Fahey, (J.), and Vlisidis, (A.), 1955. Am. J. Sci. 253, 497–532 [M.A. 14-/2].CrossRefGoogle Scholar
Buddington, (A. F.) and Lindsley, (D. H.), 1964. J. Petrol. 5, 310–57 [M.A. 17 278].CrossRefGoogle Scholar
Carmichael, (I. S. E.), 1967. Contr. Mineral. Petrol. 14, 36–64.CrossRefGoogle Scholar
Czamanske, (G. K.) and Mihalak, (P.), 1972. J. Petrol. 13, 493–509 [M.A. 73-i9°6].CrossRefGoogle Scholar
Edwards, (A. B.), 1938. Proc. Aust. Inst. Min. Met. 110, 39–58.Google Scholar
Elsdon, (R.), 1972. Mineral. Mag. 38, 946–56 [M.A. 73-738].CrossRefGoogle Scholar
Evrard, (P.), 1949. Econ. Geol. 44, 210–32.CrossRefGoogle Scholar
Heier, (K.), 1956. Am. J. Sci. 254, 505–15.CrossRefGoogle Scholar
Mason, (P. K.), Frost, (M. T.), and Reed, (S. J. B.), 1969. Natl. Phys. Lab. (I.M.S.) Rep. 2. Google Scholar
Siemiatkowski, (J.), 1970. Kwart. Geol. 14, 1–8 [M.A. 72-508].Google Scholar
Verhoogen, (J.), 1962. J. Geol. 70, 168–81 [M.A. I6-72].CrossRefGoogle Scholar
Vincent, (E. A.), 1960. Neues Jahrb. Mineral. Abh. 94, 993–1016 [M.A. I5-144].Google Scholar
Vincent, (E. A.) and Phillips, (R.), 1954. Geochim. Cosmochim. Acta, 6, 1–26 [M.A. 12-499].CrossRefGoogle Scholar
Wright, (J. B.), Chevallier, (R.) and Mathieu, (S.), 1957. Mineral. Mag. 31, 624–55 [M.A. 13-556].Google Scholar
Wells, (M. K.), 1962. Geol. Surv. Dept. Sierra Leone, Short Paper No. p. ﹛Bull. Overseas Geol. Min. Res., Suppl. No. 4) [M.A. I6-305].Google Scholar
Wright, (J. B.), 1959. Mineral. Mag. 32, 32–7.Google Scholar
Wright, (J. B.) 1961. Ibid. 32, 778–89 [M.A. 15-369].Google Scholar