Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:07:26.996Z Has data issue: false hasContentIssue false

Minerals of the rhabdophane group and the alunite supergroup in microgranite: products of low-temperature alteration in a highly acidic environment from the Velence Hills, Hungary

Published online by Cambridge University Press:  02 July 2018

Martin Ondrejka*
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Peter Bačík
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Tomáš Sobocký
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Pavel Uher
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Tomáš Mikuš
Affiliation:
Earth Science Institute of the Slovak Academy of Sciences, Ďumbierska 1, 974 01, Banská Bystrica, Slovakia
Jarmila Luptáková
Affiliation:
Earth Science Institute of the Slovak Academy of Sciences, Ďumbierska 1, 974 01, Banská Bystrica, Slovakia
Patrik Konečný
Affiliation:
Geological Survey of Slovak Republic, Mlynská dolina 1, 817 04 Bratislava, Slovakia

Abstract

An assemblage of alunite-supergroup minerals (ASM), rhabdophane-group minerals (RGM), goethite and associated clay minerals occurs in Permian A-type porphyritic microgranite in the eastern part of the Velence Hills, Hungary. The secondary sulfates/phosphates include jarosite, Pb-rich jarosite and alunite, corkite, hinsdalite and rhabdophane-(Ce), -(La) and -(Nd). Detailed electron probe microanalysis and Raman spectroscopy reveal a wide miscibility among RGM end-members and show a rhabdophane–tristramite–brockite solid solution with extensive compositional variation. Moreover, ASM show heterogeneous composition and complex substitution mechanisms within the alunite, beudantite and plumbogummite groups. The formation of this rare mineral assemblage reveals extensive remobilization of rare-earth elements (REE), Th, U, P, S, Fe and Pb under supergene conditions. Compositional variations and substitution trends of the RGM investigated indicate that Th, U, Ca and Pb are incorporated into the rhabdophane structure by a (Ca, Pb)2+ + (Th, U)4+ ↔ 2REE3+ substitution mechanism. Consequently, we suggest the following end-member formulae for RGM containing divalent and tetravalent cations: (Ca0.5Th0.5)PO4·H2O for brockite, (Pb0.5Th0.5)PO4·H2O for grayite and (Ca0.5U0.5)PO4·2H2O for tristramite. The ASM and RGM originated from total leaching of the primary magmatic REE, Th, U and P minerals in the microgranite [most probably allanite-(Ce), fluorapatite and possibly also xenotime-(Y)], together with input of Pb and S in low-temperature, acid sulfate solutions, connected with an adjacent Palaeogene andesite–diorite intrusion and the accompanying hydrothermal sulfide mineralization.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Michael Rumsey

References

Akers, W.T., Grove, M., Harrison, T.M. and Ryerson, F.J. (1993) The instability of rhabdophane and its unimportance in monazite paragenesis. Chemical Geology, 110, 169176.Google Scholar
Andersen, A.K., Clark, J.G., Larson, P.B. and Neill, O.K. (2016) Mineral chemistry and petrogenesis of a HFSE(+HREE) occurrence, peripheral to carbonatites of the Bear Lodge alkaline complex, Wyoming. American Mineralogist, 101, 16041623.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2000) Handbook of mineralogy, Vol. 4, Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, USA.Google Scholar
Atkin, D., Basham, I.R. and Bowles, F.W. (1983) Tristramite, a new calcium uranium phosphate of the rhabdophane group. Mineralogical Magazine, 47, 393396.Google Scholar
Bajnóczi, B., Molnár, F., Maeda, K., Nagy, G. and Vennemann, T. (2002) Mineralogy and genesis of primary alunites from epithermal systems of Hungary. Acta Geologica Hungarica, 45, 101118.Google Scholar
Banfield, J.F. and Eggleton, R.A. (1989) Apatite replacement and rare earth mobilisation, fractionation, and fixation during weathering. Clays and Clay Minerals, 37, 113127.Google Scholar
Bau, M. and Koschinsky, A. (2009) Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 43, 3747.Google Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.Google Scholar
Benkó, Z., Molnár, F., Billström, K., Pécskay, Z. and Lespinasse, M. (2010) Genetic and age relationship of base metal mineralization along the Periadriatic-Balaton Lineament system on the basis of radiogenic isotope studies. Acta Mineralogica Petrographica Abstract Series, 6, 224.Google Scholar
Benkó, Z., Molnár, F., Lespinasse, M., Billström, K., Pécskay, Z. and Németh, T. (2014) Triassic fluid mobilization and epigenetic lead-zinc sulphide mineralization in the Transdanubian Shear Zone (Panonian Basin, Hungary). Geologica Carpathica, 65, 177194.Google Scholar
Berger, A., Gnos, E., Janots, E., Fernandez, A. and Giese, J. (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chemical Geology, 254, 238248.Google Scholar
Bowles, J.F.W. and Morgan, D.J. (1984) The composition of rhabdophane. Mineralogical Magazine, 48, 146148.Google Scholar
Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, P. and Guillet, B. (1990) Cerium anomalies in lateritic profile. Geochimica et Cosmochimica Acta, 54, 781795.Google Scholar
Broska, I. and Uher, P. (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geologica Carpathica, 52, 7990.Google Scholar
Buchholz, T.W., Falster, A.U. and Simmons, W.B. (2010) New data on grayite-like minerals from Wisconsin pegmatites. Contributed papers in specimen mineralogy: part 1, 36th Rochester Mineralogical Symposium. Rocks & Minerals, 85, 160161.Google Scholar
Buda, G. (1985) Origin of Collision-type Variscan Granitoids in Hungary, West-Carpathian and Central Bohemian Pluton. PhD thesis, unpublished. Budapest [in Hungarian].Google Scholar
Buda, G. (1993) Enclaves and fayalite-bearing pegmatitic “nests” in the upper part of the granite intrusion of the Velence Mts., Hungary. Geologica Carpathica, 44, 143153.Google Scholar
Buda, G. and Nagy, G. (1995) Some REE-bearing accessory minerals in two types of Variscan granitoids, Hungary. Geologica Carpathica, 46, 6778.Google Scholar
Čopjaková, R., Novák, M. and Franců, E. (2011) Formation of authigenic monazite-(Ce) to monazite-(Nd) from Upper Carboniferous graywackes of the Drahany Upland: roles of the chemical composition of host rock and burial temperature. Lithos, 127, 373385.Google Scholar
Daridáné-Tichy, M. (1987) Paleogene andesite volcanism and associated rock alteration (Velence Mountains, Hungary). Geologický Zborník – Geologica Carpathica, 38, 1934.Google Scholar
De Bruiyn, H., Van der Westhuizen, W.A., Beukes, G.J. and Meyer, T.Q. (1990) Corkite from Aggeneys, Bushmanland, South Africa. Mineralogical Magazine, 54, 603608.Google Scholar
Demartin, F., Pilati, T., Diella, V., Donzelli, S. and Gramaccioli, C.M. (1991) Alpine monazite: further data. Canadian Mineralogist, 29, 6167.Google Scholar
Desborough, G.A., Smith, K.S., Lowers, H.A., Swayze, G.A., Hammarstrom, J.M., Diehl, S.F., Leinz, R.W. and Driscoll, R.L. (2010) Mineralogical and chemical characteristics of some natural jarosites. Geochimica et Cosmochimica Acta, 74, 10411056.Google Scholar
Dill, H.G. (2001) The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth Science Reviews, 53, 3593.Google Scholar
Dutrizac, J.E. and Jambor, J.L. (2000) Jarosites and their application in hydrometallurgy. Pp. 405452 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors) Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Ehlmann, B.L., Swayze, G.A., Milliken, R.E., Mustard, J.F., Clark, R.N., Murchie, S.L., Breit, G.N., Brigitte Gondet, J.J., Poulet, F., Carter, J., Calvin, W.M., Benzel, W.M. and Seelos, K.D. (2016) Discovery of alunite in Cross crater, Terra Sirenum, Mars: evidence for acidic, sulfurous waters. American Mineralogist, 101, 15271542.Google Scholar
Fisher, F.G. and Meyrowitz, R. (1962) Brockite, a new calcium thorium phosphate from the Wet Mountains, Colorado. American Mineralogist, 47, 13461355.Google Scholar
Frost, R.L. and Palmer, S.J. (2011) A vibrational spectroscopic study of the mineral corkite PbFe33+(PO4,SO4)2(OH)6. Journal of Molecular Structure, 988, 4751.Google Scholar
Frost, R.L., Wills, R.-A., Weier, M.L. and Martens, W. (2005) Comparison of the Raman spectra of natural and synthetic K- and Na-jarosites at 298 and 77 K. Journal of Raman Spectroscopy, 36, 435444.Google Scholar
Frost, R.L., Wills, R.-A., Weier, M.L., Martens, W. and Mills, S. (2006 a) A Raman spectroscopic study of selected natural jarosites. Spectrochimica Acta, A63, 18.Google Scholar
Frost, R.L., Wills, R.-A., Weier, M.L., Martens, W. and Kloprogge, J.T. (2006 b) A Raman spectroscopic study of alunites. Journal of Molecular Structure, 785, 123132.Google Scholar
Frost, R.L., Palmer, S.J. and Xi., Y. (2011) A vibrational spectroscopic study of the mineral hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6. Journal of Molecular Structure, 1001, 4348.Google Scholar
Gaboreau, S., Beaufort, D., Viellard, P. and Patrier, P. (2005) Aluminum phosphate-sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator river uranium field, Northern Territories, Australia. Canadian Mineralogist, 43, 813827.Google Scholar
Guang, F., Xiang-kum, G.E. and A-peng, Y.U. (2013) Discovery of tristramite in China. Acta Mineralogica Sinica, 33, 265270.Google Scholar
Hanson, G.N. (1980) Rare earth elements in petrogenetic studies of igneous systems. Annual Review of Earth and Planetary Sciences, 8, 371406.Google Scholar
Herrero, T.R., Blanco, J.D.R., Oelkers, E.H. and Benning, L.G. (2011) The direct precipitation of rhabdophane (REEPO4·nH2O) nano-rods from acidic aqueous solutions at 5–100°C. Journal of Nanoparticle Research, 13, 40494062.Google Scholar
Hildebrand, F.A., Carron, M.K. and Rose, H.J. (1957) Re-examination of rhabdophane (scovillite) from Salisbury, Connecticut. Geological Society of America Bulletin, 68, 17441745 [abstract].Google Scholar
Horváth, I., Daridáné Tichy, M., Dudko, A., Gyalog, L. and Ódor, L. (2004) Geology of the Velence Hills and the Balatonfő. Explanatory book of the geological map of the Velence Hills (1:25 000) and the geological map of pre-Sarmatian surface of the Balatonfő–Velence area (1:100 000). Geological Institute of Hungary, Budapest.Google Scholar
Hukuo, K. and Hikichi, Y. (1979) Syntheses of rare-earth orthophosphates (RPO4.nH2O, R = La–Yb, n = 0–2). Bulletin of the Nagoya Institute of Technology, 31, 175182 [English summary].Google Scholar
Johansson, R.G. and Vance, E.R. (1986) DTA study of the rhabdophane to monazite transformation in rare earth (La-Dy) phosphates. Thermochimica Acta, 108, 6572.Google Scholar
Jones, A.P., Wall, F. and Williams, C.T. (1996) Rare Earth Minerals. Chemistry, Origin and Ore Deposits. Mineralogical Society Series 7. Chapman & Hall, London.Google Scholar
Kijkowska, R. (2003) Preparation of lanthanide orthophosphates by crystallisation from phosphoric acid solution. Journal of Materials Science, 38, 229233.Google Scholar
Kijkowska, R., Cholewka, E. and Duszak, B. (2003) X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallisation from phosphoric acid solution. Journal of Materials Science, 38, 223228.Google Scholar
Klingelhofer, G., Morris, R.V., Bernhardt, B., Schroder, C., Rodionov, D., de Souza, P.A.J., Yen, A.S., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gutlich, P., Ming, D.W., Renz, F., Wdowiak, T.J., Squyres, S.W. and Arvidson, R.E. (2004) Jarosite and hematite at Meridiani Planum from Opportunity's Mossbauer spectrometer. Science, 306, 17401745.Google Scholar
Krenn, E. and Finger, F. (2007) Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: microprobe data and geochronological implications. Lithos, 95, 130147.Google Scholar
Kucha, H. (1979) Fe2+Th(PO4)2 monoclinic, Fe2+Th(PO4)2·H2O hexagonal, Fe1−x2+ Th1–x(RE,Fe3+)2x(PO4)2·1–3H2O orthorhombic and Fe32+(H2O)(PO4)2 monoclinic – four new minerals from Poland. Mineralogia Polonica, 10, 129.Google Scholar
Kucha, H. and Wieczorek, A. (1980) Ca1–xTh1–x[PO4]2·2H2O, a new mineral from Lower Silesia, Poland. Mineralogia Polonica, 11, 123136.Google Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography, (Armbruster, T., , T. and Danisi, R.N. editors). W. De Gruyter, Berlin, Germany.Google Scholar
Madden, M.E.E., Bodnar, R.J. and Rimstidt, J.D. (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature, 431, 821823.Google Scholar
Matýsek, D. (2013) Evidence of rare earth elements (REE) mobilization in teschenites of the Beskydy Mts. Region. Acta Musei Moraviae–Scientiae Geologicae, 98, 101113 [in Czech with English Abstract].Google Scholar
Mogilevsky, P. and Boakye, E.E. (2007) Solid solubility and thermal expansion in a LaPO4–YPO4 system. Journal of the American Ceramic Society, 90, 18991907.Google Scholar
Molnár, F. (2004) Characteristics of Variscan and Palaeogene fluid mobilization and ore forming processes in the Velence Mts., Hungary: A comparative fluid inclusion study. Acta Mineralogica-Petrographica, 45, 5563.Google Scholar
Mooney, R.C.L. (1950) X-Ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification. Acta Crystallographica, 3, 337340.Google Scholar
Murakami, T., Utsunomiya, S., Imazu, Y. and Prasad, P. (2001) Direct evidence of late Archean to early Proterozoic anoxic atmosphere from a product of 2.5 Ga old weathering. Earth and Planetary Science Letters, 184, 523528.Google Scholar
Nagy, G. and Draganits, E. (1999) Occurrence and mineral-chemistry of monazite and rhabdophane in the Lower and ?Middle Austroalpine tectonic units of the southern Sopron Hills (Austria). Mitteilungen Gesellschaft Geologisches Bergbaustudien Osterreich, 42, 2136.Google Scholar
Nagy, G., Draganits, E., Demény, A., Pantó, G. and Arkai, P. (2002) Genesis and transformation of monazite, florencite and rhabdophane during medium grade metamorphism: examples from the Sopron Hills Eastern Alps. Chemical Geology, 191, 2344.Google Scholar
Nance, W.H. and Taylor, S.R. (1977) Rare earth element patterns and crustal evolution. II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochimica et Cosmochimica Acta, 41, 225231.Google Scholar
Ni, Y., Hughes, J.M. and Mariano, A.N. (1995) Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80, 2126.Google Scholar
Ondrejka, M., Uher, P., Pršek, J. and Ozdín, D. (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec–Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos, 95, 116129.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘‘PAP’’ φ(ρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Pršek, J., Ondrejka, M., Bačík, P., Budzyń, B. and Uher, P. (2010) Metamorphic hydrothermal REE minerals in the Bacúch magnetite deposit, Western Carpathians, Slovakia: (Sr, S)-rich Monazite-(Ce) and Nd dominant Hingganite. Canadian Mineralogist, 48, 8194.Google Scholar
Rattray, K.J., Taylor, M.R. and Bevan, D.J.M. (1996) Compositional segregation and solid solution in the –lead-dominant alunite-type minerals from Broken Hill, N.S.W. Mineralogical Magazine, 60, 779785.Google Scholar
Santana, I.V., Wall, F. and Botelho, N.F. (2015) Occurrence and behaviour of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Sierra Dourada granite, Goiás/Tocantins State, Brazil: potential for REE deposits. Journal of Geochemical Exploration, 155, 113.Google Scholar
Sawka, W.N., Banfield, J.F. and Chappell, B.W. (1986) A weathering-related origin of widespread monazite in S-type granites. Geochimica et Cosmochimica Acta, 50, 171175.Google Scholar
Scharmová, M. and Scharm, B. (1994) Rhabdophane group minerals in the uranium ore district of northern Bohemia (Czech Republic). Journal of the Czech Geological Society, 39, 267280.Google Scholar
Scott, K.M. (1987) Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. American Mineralogist, 72, 178187.Google Scholar
Serna, C.J., Parada-Cortina, C. and García-Ramos, J.V. (1986) Infrared and Raman study of alunite-jarosite compounds. Spectrochimica Acta, A42, 729734.Google Scholar
Shoji, H. and Akai, J. (1994) Brockite from Ishikawa, Fukushima Prefecture, Japan. Science Reports of Niigata University, Series E, 9, 8996.Google Scholar
Silva, E.N., Ayala, A.P., Guedes, I., Paschoal, C.W.A., Moreira, R.L., Loong, C.-K. and Boatner, L.A. (2006) Vibrational spectra of monazite-type rare-earth orthophosphates. Optical Materials, 29, 224230.Google Scholar
Smith, D.K., Roberts, A.C., Bayliss, P. and Liebau, F. (1998) A systematic approach to general and structure-type formulas for minerals and other inorganic phases. American Mineralogist, 83, 126132.Google Scholar
Stanley, C.R. (1987) Hinsdalite and other products of oxidation at the Daisy Creek stratabound copper-silver prospect, Northwestern Montana. Canadian Mineralogist, 25, 213220.Google Scholar
Stoffregen, R.E., Alpers, C.N. and Jambor, J.L. (2000) Alunite-jarosite crystallography, thermodynamics, and geochronology. Pp. 453479 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors) Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Chemical-Structural Mineral Classification System E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, Germany, 870 pp.Google Scholar
Takai, Y. and Uehara, S. (2012) Rhabdophane-(Y), YPO4·H2O, a new mineral in alkali olivine basalt from Hinodematsu, Genkai-cho, Saga Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 107, 110113.Google Scholar
Uher, P. and Broska, I. (1994) The Velence Mts. granitic rocks: geochemistry, mineralogy and comparison to Variscan Western Carpathian granitoids. Acta Geologica Hungarica, 37, 4566.Google Scholar
Uher, P. and Broska, I. (1996) Post-orogenic Permian granitic rocks in the Western Carpathian-Pannonian area: geochemistry, mineralogy and evolution. Geologica Carpathica, 47, 311321.Google Scholar
Vodyanitskii, Y.N. (2012) Geochemical fractionation of lanthanides in soils and rocks: a review of publications. Eurasian Soil Science, 45, 5667.Google Scholar
Zidarov, N. and Petrov, O. (2011) Grayite from Sredna Gora pegmatites – first find in Bulgaria. Comptes rendus de l'Académie bulgare des Sciences, 64, 17191726.Google Scholar