Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:40:26.845Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F

Published online by Cambridge University Press:  28 February 2018

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Oblast, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*

Abstract

A new mineral arsenowagnerite, Mg2(AsO4)F, the arsenate analogue of wagnerite, was found in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated closely with johillerite, tilasite, anhydrite, hematite, fluorophlogopite, cassiterite, calciojohillerite, aphthitalite and fluoborite. Arsenowagnerite occurs as equant to tabular crystals up to 1 mm across combined in interrupted crusts up to 0.1 cm × 1.5 cm × 3 cm. The mineral is transparent, light yellow, lemon-yellow, greenish-yellow or colourless and has a vitreous lustre. Arsenowagnerite is brittle, with Mohs hardness of ~5. Cleavage is distinct, the fracture is uneven. Dcalc = 3.70 g cm–3. Arsenowagnerite is optically biaxial (+), α = 1.614(2), β = 1.615(2), γ = 1.640(2) and 2Vmeas = 25(5)°. Wavenumbers of the strongest absorption bands in the IR spectrum (cm–1) are: 874, 861, 507, 491 and 470. The chemical composition (average of six electron-microprobe analyses, wt.%) is: MgO 38.72, CaO 0.23, MnO 0.32, CuO 0.60, ZnO 0.05, Fe2O3 0.11, TiO2 0.03, SiO2 0.08, P2O5 0.18, V2O5 0.03, As2O5 54.96, SO3 0.10, F 8.91 and –O=F –3.75, total 100.57. The empirical formula calculated on the basis of 5 (O + F) apfu is: (Mg1.98Cu0.02Mn0.01Ca0.01)Σ2.02(As0.99P0.01)Σ1.00O4.03F0.97. Arsenowagnerite is monoclinic, P21/c, a = 9.8638(3), b = 12.9830(3), c = 12.3284(3) Å, β = 109.291(3)°, V = 1490.15(7) Å3 and Z = 16. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 5.80(41)(002), 5.31(35)(120), 3.916(37)($\bar 2$21), 3.339(98)(221, 023), 3.155(65)(202), 3.043(100)($\bar 1$41), 2.940(72)($\bar 2$04), 2.879(34)($\bar 3$22) and 2.787(51)(320, $\bar 1$24). The crystal structure was solved from single-crystal X-ray diffraction data, R = 0.0485. Arsenowagnerite is isostructural to wagnerite-Ma2bc. The crystal structure is built by almost regular AsO4 tetrahedra, distorted MgO4F2 octahedra and distorted MgO4F trigonal bipyramids.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Stuart Mills

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.34. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2000) Handbook of Mineralogy. IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, USA.Google Scholar
Berrocal, T., Mesa, J.L., Pizarro, J.L., Urtiaga, M.K., Arriortua, M.I. and Rojo, T. (2006) Fe2(AsO4)F: A new three-dimensional condensed fluoro-arsenate iron(II) compound with antiferromagnetic interactions. Journal of Solid State Chemistry, 179, 16591667.Google Scholar
Brese, N.E. and O`Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B, 47, 192197.Google Scholar
Chopin, C., Armbruster, T., Grew, E.S., Baronnet, A., Leyx, C. and Medenbach, O. (2014) The triplite–triploidite supergroup: structural modulation in wagnerite, discreditation of magniotriplite, and the new mineral hydroxylwagnerite. European Journal of Mineralogy, 26, 553565Google Scholar
Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals Acta Crystallographica A, 51, 887897.Google Scholar
Coda, A., Giuseppetti, G., Tadini, C. and Carobbi, S.G. (1967) The crystal structure of wagnerite. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 43, 212224.Google Scholar
Dal Negro, A., Giuseppetti, G. and Pozas, J.M.M. (1974) The crystal structure of sarkinite, Mn2AsO4(OH). Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 246260.Google Scholar
Engel, G. (1989): Die Kristallstruktur von Cd2AsO4F und ihre Beziehung zu einer Reihe von Oxidsilicaten und Oxidgermanaten der Seltenen Erden. Journal of the Less-Common Metals, 154, 367374.Google Scholar
Lazic, B., Armbruster, T., Chopin, C., Grew, E.S., Baronnet, A. and Palatinus, L. (2014) Superspace description of wagnerite-group minerals (Mg,Fe,Mn)2(PO4)(F,OH). Acta Crystallographica, B70, 243258.Google Scholar
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralgist, 45, 13071324.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.Google Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4 and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.Google Scholar
Raade, G. and Rømming, C. (1986) The crystal structure of β-Mg2PO4OH, a synthetic hydroxyl analogue of wagnerite. Zeitschrift für Kristallographie, 177, 1526.Google Scholar
Rea, J.R. and Kostiner, E. (1972) The crystal structure of manganese fluorophosphate, Mn2(PO4)F. Acta Crystallographica, B28, 25252529.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Stock, N., Stucky, G.D. and Cheetham, A.K. (2002) Synthesis and characterization of the synthetic minerals villyaellenite and sarkinite, Mn5(AsO4)2(HAsO4)2·4H2O and Mn2(AsO4)(OH). Zeitschrift für Anorganische und Allgemeine Chemie, 628, 357362.Google Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.Google Scholar
Waldrop, L. (1969) The crystal structure of triplite, (Mn,Fe)2FPO4. Zeitschrift für Kristallographie, 130, 114.Google Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material

Download Pekov et al. supplementary material(File)
File 36.5 KB