Article contents
Penberthycroftite, [Al6(AsO4)3(OH)9(H2O)5]·8H2O, a second new hydrated aluminium arsenate mineral from the Penberthy Croft mine, St. Hilary, Cornwall, UK
Published online by Cambridge University Press: 02 January 2018
Abstract
Penberthycroftite, ideally [Al6(AsO4)3(OH)9(H2O)5]·8H2O, is a new secondary aluminium arsenate mineral from the Penberthy Croft mine, St. Hilary, Cornwall, England, UK. It occurs as tufts of white, ultrathin (sub-micrometre) rectangular laths, with lateral dimensions generally < 20 μm. The laths are flattened on {010} and elongated on [100]. The mineral is associated with arsenopyrite, bettertonite, bulachite, cassiterite, chalcopyrite, chamosite, goethite, liskeardite, pharmacoalumite–pharmacosiderite and quartz. Penberthycroftite is translucent with a white streak and a vitreous to pearly lustre. The calculated density is 2.18 g/cm3. Optically, only the lower and upper refractive indices could be measured, 1.520(1) and 1.532(1) respectively. No pleochroism was observed. Electron microprobe analyses (average of 14) with H2O obtained from thermogravimetric analysis and analyses normalized to 100% gave Al2O3 = 31.3, Fe2O3 = 0.35, As2O5 = 34.1, SO3 = 2.15 and H2O = 32.1. The empirical formula, based on nine metal atoms and 26 framework anions is [Al5.96Fe0.04(As0.97Al0.03O4)3(SO4)0.26(OH)8.30(H2O)5.44](H2O)7.8, corresponding to the ideal formula [Al6(AsO4)3(OH)9(H2O)5]·8H2O. Penberthycroftite is monoclinic, space group P21/c with unit-cell dimensions (100 K): a = 7.753(2) Å, b = 24.679(5) Å, c = 15.679(3) Å and β = 94.19(3)°. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 13.264(46) (011); 12.402(16)(020); 9.732(100)(021); 7.420(28)(110); 5.670(8)(130); 5.423(6)(1̄31). The structure of penberthycroftite was solved using synchrotron single-crystal diffraction data and refined to wRobs = 0.059 for 1639 observed (I> 3σ(I)) reflections. Penberthycroftite has a heteropolyhedral layer structure, with the layers parallel to {010}. The layers are strongly undulating and their stacking produces large channels along [100] that are filled with water molecules. The layers are identical to those in bettertonite, but they are displaced relative to one another along [001] and [010] such that the interlayer volume is decreased markedly (by ∼10%)relative to that in bettertonite, with a corresponding reduction in the interlayer water content from 11 H2O per formula unit (pfu) in bettertonite to 8 H2O pfu in penberthycroftite.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 2016
References
- 4
- Cited by