Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T15:40:33.950Z Has data issue: false hasContentIssue false

Structure of Sr-Zr-bearing perrierite-(Ce) from the Burpala Massif, Russia

Published online by Cambridge University Press:  05 July 2018

Marcin Stachowicz*
Affiliation:
College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP), Żwirki i Wigury 93, 02-089 Warsaw, Poland Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
Bogusław Bagiński
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089, Żwirki i Wigury 93, Warsaw, Poland
Ray Macdonald
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089, Żwirki i Wigury 93, Warsaw, Poland
Pavel M. Kartashov
Affiliation:
Institute of Geology of Ore Deposits, Mineralogy, Petrology and Geochemistry, Russian Academy of Sciences, RU-109017 Moscow, Russia
Artur OzięBło
Affiliation:
Institute of Ceramics and Building Materials, Poste˛pu 9, 02-676, Warsaw, Poland
Krzysztof Wożniak
Affiliation:
Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland

Abstract

Sr- and Zr-bearing perrierite-(Ce) occurring in aegirinized syenite pegmatites of the Burpala massif, Russia, is compositionally intermediate between perrierite-(Ce) and hezuolinite and occupies a compositional gap in minerals of the chevkinite group. Its crystal structure has been determined using a single-crystal diffractometer fitted with a CCD detector and MoKα X-ray radiation. The mineral is monoclinic; a = 13.815(1), b = 5.668(1), c = 11.842(1) Å , β = 113.843(3)º, V = 848.18(4) Å3, space group C2/m, Z = 2. The crystal structure was refined with the occupancies [(Ce1.2La1.0Nd0.15) (Sr1.0Ca0.5Na0.15)]4(Zr0.5Fe0.3Mn0.2)(Ti1.3Fe0.7)2Ti2(Si2O7)2O8 on the basis of chemical composition although the allocation of cations to particular sites was performed on the basis of the number of refined electrons in each unique site. The dominance of Zr in the B site links the Burpala perrierite-(Ce) to more Sr-Zr-rich members of the chevkinite group, such as hezuolinite and rengeite. As in all of the perrierite members, there is a distortion of the D site octahedra, which is interpreted as due to the packing of the REE ions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonatti, S. (1959) Chevkinite, perrierite and epidotes. American Mineralogist, 44, 115137.Google Scholar
Brown, I.D. (1978) Bond valences – a simple structural model for inorganic chemistry. Chemical Society Reviews, 7, 359376.CrossRefGoogle Scholar
Chukanov, N.V., Aksenon, S.M., Rastsvetaeva, R.K., Belakovskiy, D.I., Göttlicher, J., Britvin, S.N. and Van, K.V. (2012a) Christofschäferite-(Ce), IMA 2011-107. CNMNC Newsletter No. 13, June 2012, page 810; Mineralogical Magazine, 76, 807817.Google Scholar
Chukanov, N.V., Blass, G., Pekov, I.V., Belakovskiy, D.I., Van, K.V., Rastsvetaeva, R.K. and Aksenov, S.M. (2012b) Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn) (Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany. Geology of Ore Deposits, 54, 647655.CrossRefGoogle Scholar
Calvo, C. and Faggiani R. (1974) A re-investigation of the crystal structures of chevkinite and perrierite. American Mineralogist, 59, 12771285.Google Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Gottardi, G. (1960) The crystal structure of perrierite. American Mineralogist, 45, 114.Google Scholar
Haggerty, S.E. and Mariano, A.N. (1983) Strontianloparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Parana Basin carbonatites, South America. Contributions to Mineralogy and Petrology, 84, 365381.CrossRefGoogle Scholar
Hoppe, R. (1979). Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie, 150, 2352.CrossRefGoogle Scholar
Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H.P. and Bernet, K. (1989). A new route to charge distributions in ionic solids. Journal of the Less Common Metals, 156, 105122.CrossRefGoogle Scholar
Ito, J. and Arem, J.E. (1971) Chevkinite and perrierite: Synthesis, crystal growth and polymorphism. American Mineralogist, 56, 307319.Google Scholar
Macdonald, R. and Belkin, H.E. (2002) Compositional variation in minerals of the chevkinite group. Mineralogical Magazine, 66, 10751098.CrossRefGoogle Scholar
Macdonald, R., Belkin, H.E., Wall, F. and Bagiń ski, B. (2009) Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Mineralogical Magazine, 73, 521540.CrossRefGoogle Scholar
Macdonald, R., Bagiński, B., Kartashov, P., Zozulya, D. and Dzierz˙anowski, P. (2012) Chevkinite-group minerals from Russia and Mongolia: new compositional data from fenites, metasomatites and ore deposits. Mineralogical Magazine, 76, 535549.CrossRefGoogle Scholar
Mills, S.J., Bindi, L., Cadoni, M., Kampf, A.R., Ciriotti, M.E. and Ferraris, G. (2012) Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,&)18O38, a new member of the crichtonite group. European Journal of Mineralogy, 24, 10611067.CrossRefGoogle Scholar
Miyajima, H., Matsubara, S., Miyawaki, R., Yokoyama, K. and Hi rokawa, K. (2001) Rengeite , Sr4ZrTi4Si4O22, a new mineral, the Sr-Zr analogue of perrierite from the Itoigawa-Ohmi district, Niigata prefecture, central Japan. Mineralogical Magazine, 65, 111120.CrossRefGoogle Scholar
Miyajima, H., Miyawaki, R. and Ito, K. (2002) Matsubaraite, Sr4Ti5(Si2O7)2O8, a new mineral, the Sr-Ti analogue of perrierite in jadeitite from the Itoigawa-Ohmi district, Niigata prefecture, Japan. European Journal of Mineralogy, 14, 11191128.CrossRefGoogle Scholar
Miyawaki, R., Matsubara, S. and Miyajima, H. (2002) The crystal structure of rengeite, Sr4ZrTi4(Si2O7)O8. Journal of Mineralogical and Petrological Sciences, 97, 712.CrossRefGoogle Scholar
Nespolo, M., Ferraris, G. and Ohashi, H. (1999) Charge Distribution as a tool to investigate structural details: meaning and application to pyroxenes. Acta Crystallographica, B55, 902916.CrossRefGoogle Scholar
Nespolo, M., Ferraris, G., Ivaldi, G. and Hoppe, R. (2001) Charge Distribution as a tool to investigate structural details. II. Extension to hydrogen bonds, distorted and hetero-ligand polyhedra. Acta Crystallographica, B57, 652664.CrossRefGoogle Scholar
Popov, V.A., Pautov, L.A., Sokolova, E., Hawthorne, F.C., McCammon, C. and Bazhenova, L.F. (2001) Polyakovite-(Ce), (REE,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2 (Ti,Nb)2Si4O22, a new metamict mineral species from the Ilmen Mountains, southern Urals, Russia: mineral description and crystal chemistry. The Canadian Mineralogist, 39, 10951104.CrossRefGoogle Scholar
Portnov, A.M. (1964) Strontium perrierite in the North Baikal region. Doklady of the Academy of Sciences USSR: Earth Science Section, 156, 118120.Google Scholar
Reddy, B.J., Jun Yamauchi, Reddy, Y.P., Ravikumar, R.V.S.S.N. , Chandrasekhar , A.V. and Venkataramanaiah, M. (2002) Optical and EPR spectra of Ti3+ in lamprophyllite from Kola Peninsula, Russia. Neues Jahrbuch für Mineralogie, Monatshefte, 2002, 138144.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic Elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Shen, G., Yang, G and Xu, J. (2005) Maoniupingite-(Ce): A new rare-earth mineral from the Maoniaping rareearth deposit in Mianning, Sichuan, China. Sedimentary Geology and Tethyan Geology, 25, 210216. [in Chinese with English abstract].Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Xu, Y., Yang, G., Li, G., Wu, Z. and Shen, G. (2008) Dingdaohengite-(Ce) from the Bayan Obo REE-Nb- Fe Mine, China: Both a true polymorph of perrierite- (Ce) and a titanic analog at the C1 site of chevkinite subgroup. American Mineralogist, 93, 740744.CrossRefGoogle Scholar
Yang, Z., Giester, G., Ding, K. and Tillmanns, E. (2012) Hezuoli n i te, (Sr,REE) 4Zr(Ti,Fe3+,Fe2+) 2 Ti2O8(Si2O7)2, a new mineral species of the chevkinite group from Saima alkaline complex, Liaoning Province N. China. European Journal of Mineralogy, 24, 189196.CrossRefGoogle Scholar