Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T09:24:10.265Z Has data issue: false hasContentIssue false

Synmetamorphic Variscan siderite mineralisation of the Rhenish Massif, Central Europe

Published online by Cambridge University Press:  05 July 2018

Ulrich F. Hein*
Affiliation:
Institut für Geologic und Dynamik der Lithosphäre, Goldschmidstr. 3, D-37077 Göttingen, Germany

Abstract

The Rhenohercynian thrust- and fold-belt of Central Europe hosts a syn- to post-kinematic Variscan vein mineralisation, which is restricted to the Rhenish Massif, Germany. It is formed during four major stages and siderite is the principal ore mineral of the 'main stage'. The latter can be traced throughout the massif, but is mainly developed in the Siegerland district as synkinematic lodes which are hosted by low-grade metamorphic pelites of Lower Devonian age.

Fluid inclusion studies prove large-scale homogeneous ore forming fluids of low salinity (≤5 wt.% NaCI equiv.) and Na(-K > -Fe ≫ Mg)-C1 composition, which are CO2 undersaturated (XCO2 = 0.003-0.1). Siderite precipitation at 220−≤320°C and 0.7-1.4 kbar can be deduced by microthermometry, chlorite themometry, REE fractionation and experimental data. Thereby the maximum formation temperature comes close to or even exceeds the peak metamorphic temperature. From Mn contents and δ13C-δ18O variation of siderite a trend is apparent in which formation temperatures gradually decrease from S.E. to N.W. across the belt. This trend correlates with decreasing degree of host-rock deformation and decreasing metamorphic grade. Fluid composition as well as stable isotopes and REE fractionation of siderite point to ore-forming solutions, which were generated and equilibrated at depth during prograde metamorphism.

Structural characteristics of the lodes, age determinations, and P-T estimations prove fluid ascent and siderite precipitation during and/or immediately after peak metamorphism predating the postkinematic magmatism of the Rhenohercynian belt. Main(-siderite)-stage mineralisation of the Rhenish Massif is classified as metamorphogeneous.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrcnt, H., Clauer, N., Hunziker, J. C., and Weber, K. (1983) Migration of folding and metamorphism in the Rheinische Sehiefergebirge deduced from K-Ar and Rb-Sr age determinations. In Intracontinental Fold Belts (H. Martin and F. W. Eder, eds.), Springer, Berlin-Heidelberg, 323-38.Google Scholar
Anderle, H.-J., Massone, H.-J., St., Oncken, O., and Weber, K. (1990) Southern Taunus Mountains. In IGCP 233, Conference on Paleozoic Orogens in Central Europe—Geology and Geophysics, Field Guide Mid-German Crystalline Rise & Rheinisches Schiefergebirge (W. Franke and K. Weber, eds.), Göttingen-Giessen, 125-48.Google Scholar
Bau, M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interac-tion and the significance of the oxidation state of europium. Chem. Geol., 93, 219–30.Google Scholar
Bau, M. and Möller, P. (1992) Rare earth element fractionation in metamorphogenie hydrothermal calcite, magnesite and siderite. Mineral. Petrol., 45, 231–46.Google Scholar
Bauer, G., Ebert, A., von Kamp, H., Müller, D., Pietzner, H., and Scherp, A. (1979) Die Blei-Zink-Erzlagerstäitten yon Ramsbeek und Umgebung. Monogr. dt. Blei-Zink-Erzlagerst. 6, Geol. Jahrb., D33, 1-375.Google Scholar
Behr, H. J. (1989) Die geologisehe Aktivitfit yon Krustenfluiden. Nds. Akad. Geowiss. VerOfftl., 1, 475.Google Scholar
Bennett, D. G. and Barker, A. J. (1992) High salinity fluids: The result of retrograde metamorphism in thrust zones. Geochim. Cosmochim. Acta, 56, 8195.Google Scholar
Bielicki, K.-H. and Tischendoff, G. (1991) Lead isotope and Pb-Pb model age determination of ores from Central Europe and their metallogenetic inter-pretation. Contrib. Mineral. Petrol., 106, 440-61.Google Scholar
Belss, M. J. M., Bouckeart, J., and Paproth, E. (1989) The Dinant nappes: A model of tensional listric faulting inverted into compressional folding and thrusting. Bull. Soc. Belg. Geol., 98-2, 221-30.Google Scholar
Bois, C. and ECORS Scientific Party (1988) Major crustal features disclosed by the ECORS deep seismic profiles. Ann. Soc. géol: Belg., 111, 257–77.Google Scholar
Bornhardt, W. (1910/12) Uberdie Gangverhaltnisse des Siegerlandes und seiner Umgebung. Arch. Lagerstiitt. Forsch., 2, 1415; 8, 1-515.Google Scholar
Bouckaert, J., Forck, W., and Vandenberge, N. (1988) First results of the Belgian Geotraverse 1986 (BEL-CORP). Ann. Soc. gdol. Belg., 111, 279–90.Google Scholar
Buntebarth, G., Koppe, I., and Teichmtiller, M. (1982) Paleogeothermics in the Ruhr basin. In Geothermics and Geothermal Energy (V. Cermak and R. Häinel, eds.), Schweizerbath, Stuttgart, 4555.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23, 471–85.Google Scholar
Cathelineau, M. and Nieva, D. (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol., 91, 235–44.Google Scholar
Dulski, P. (1992) Determination of minor and trace elements in four Canadian iron-formation standard samples FeR-1, FeR2, FeR3 and FeR4 by INAA and ICP-MS. Geostandards Newsletter, 16/2, 325-32.Google Scholar
Erlinghagen, K.-P. (1989) Fluid inclusion studies of siderite lodes of the Siegerland-Wied District (Rheinisches Schiefergebirge), FRG. Neues Jahrb. Mineral., Mh., 557-67.Google Scholar
Eyssen, G. (1985) Mineralogie und Geochemie von Chloriten des Lahn—Gebietes, stidliches Rheinisches Schiefergebirge. Clausthaler Geowiss. Diss., 17, 1184. Clausthal-Zellerfeld.Google Scholar
Fenchel, W., Gies, H., Gleichmann, H.-D., Helmind, W., Hentschel, H., Heyl, K. E., Htittenhain, H., Langenbach, U., Lippert, H.-J., Luznat, M., Meyer, W., Pahl, A., Rao, M. S., Reichenbach, R., Stadler, G., Vogler, H., and Walther, H. W. (1985) Die Sideriterzgäinge im Siegerland-Wied-Distrikt.-Sam-melwerk dt. Eisenerzlagerst., I Eisenerze im Grund-gebirge, 1, D77, 1-517.Google Scholar
Franke, W. (1989) Tectonostratigraphic units in the Variscan belt of Central Europe. In Terranes in the Circum-Atlantic Paleozoic Orogens (R. D. Dall-meyer, ed.), Geol. Soc. Amer. Spec. Pap., 230, 6790.Google Scholar
Franke, W., Bortfield, R. K., Brix, M., Drozdzewski, G., Diirbaum, H. J., Giese, P., Janoth, W., Jödicke, H., Reichert, Cr., Scherp, A., Schmoll, J., Thomas, R., Thiinker, M., Weber, K., Weisner, M. G., and Wong, H. K. (1990) Crustal structure of the Rhenish Massif: results of deep seismic reflection lines DEK-ORP-2 North and DEKORP 2-North-Q. Geol. Rdsch., 79/3, 523-66.Google Scholar
Fransolet, A.-M., Kramm, U., and Schreyer, W., (1977) Metamorphose und Magmatismus im Venn-Stavelot Massiv, Ardennen. Fortschr. MineraL, 55, Beih. 2, 75-103.Google Scholar
French, B. M. (1971) Stability relations of siderite (FeCO3) in the system Fe-C-O. Am. J. Sci., 271, 3778.Google Scholar
Frost, R. (1979a) Mineral equilibria involving mixed-volatiles in a C-O-H fluid phase: The stabilities of graphite and siderite Ibid., 279, 1033-59.Google Scholar
Frost, R. (1979b) Metamorphism of iron-formation: Parageneses in the system Fe-Si-C-O—H. Econ. Geol., 74, 775-85.Google Scholar
Gerler, J. (1990) Geochemische Untersuchungen an hydrothermalen, metamorphen, granitischen undpeg-matitischen Quarzen und deren Fliissigkeitseinschllis-sen. Dissertation, 1-169, Universitat Göttingen.Google Scholar
Goldfarb, R. J., Leach, D. L., Pickthorn, W. J., and Paterson, C. J. (1988) Origin of lode-gold deposits of the Juneau gold belt, southeastern Alaska. Geology, 16, 440–43.Google Scholar
Hannak, W. (1964) Ergebnisse yon Untersuehungen im Blei-Zink-Erzbezirk des siidlichen Rheinischen Schiefergebirges. Erzmetall, 17, 291–98.Google Scholar
Hannak, W. (1965) Verteilung von Fe, Mn, Ca nnd Mg im Karbonspat I der Blei-Zink-Erzgange des sfidlichen Rheinischen Schiefergebirges. Geol. Rdsch., 55, 385–98.Google Scholar
Hannak, W. and Gundlach, H. (1967) Elementverteilung in Karbonspäiten der Blei-Zink-Erzgä;inge des südlichen Rheinischen Schiefergebirges. Neues Jahrb. Mineral., Abh., 107, 120. Stuttgart.Google Scholar
Haskin, M. A. and Haskin, L. A. (1966) Rare earths in European shales: a redetermination. Science, 154, 507–9.Google Scholar
Hein, U. F. and Behr, H. (1991a) Synorogene Verezun-gen der variskischen Exteruiden Mitteleuropas. In SPP ‘Intraformationale Lagerstiittenbildung', Report 2 (G. Friedrich, ed.), Deutsche Forschungsgemein-schaft, Bonn, 165-73.Google Scholar
Hein, U. F. (1991b) Synorogenic ore deposition in the Variscan external belt of Europe: A tectonic brine model. In Source, Transport and Deposition of Metals (Pagel, M. and Leroy, J. L. eds.), Balkema, Rotterdam, 57-60.Google Scholar
Heinrich, W., Franz, L., Hein, U. F., and Herms, P. (1992) Synthetische Fltissigkeitseinschliisse als Mik-rothermometriestandards: Daten verschiedener Laboratorien mit unterschiedlichen Heiz-Kiihl-Systemen im Vergleich. Ber. d. Deutsch. Mineral. Ges., Beih. z. Eur. Journ Mineral, 4/1, 116.Google Scholar
Herbst, F. and Müller, H.-G. (1966) Der Blei-Zinkerz-bergbau im Hunsriick-Gebiet. Gewerkschaft Mercur, Bad Ems, 1-68.Google Scholar
Hofmann, N. (1990) Zur Paläiodynamischen Entwick-lung des Prazechsteins in der Norddeutschen Senke. Nds. Akad. Geowiss. VerOfftl., 4, 518.Google Scholar
Jowett, E. C. (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC-MAC Joint Annual Meeting, Program with abstracts, 16, A62.Google Scholar
Jux, E. (1982) Petrographische und geochemische Untersuchungen an Gesteinen des Bensberg Engels-kirchener Erzreviers. Dissertation, 1-232, Universitäit Köln.Google Scholar
Köiselitz, L. (1988) Der mineralogische und geochemische Aufbau des KniestkOrpers im Liegenden der Erzlagerstiitte Rammelsberg bei Goslar/Harz, Dissertation, 1-242, Techn. Univ. Clausthal-Zellerfeld.Google Scholar
Krahn, L. (1988) Buntmetall-Vererzung und Blei-lsoto-pie im Linksrheinischen Schiefergebirge. Dissertation, 1-199, RWTH Aachen.Google Scholar
Kretschmar, U. and Scott, S. D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Canad. Mineral., 14, 364–86.Google Scholar
Lehmann, H. and Pietzner, H. (1970) Der Lüderich-Gangzug und das Gangvorkommen Nikolaus-Phönix im Bergischen Land. Fortschr. Geol. Rheinld. Westf., 17, 589664.Google Scholar
Lüders, V. and Möller, P. (1992) Fluid evolution and ore deposition in the Harz mountains. Eur. J. Mineral., 4, 1053–68.Google Scholar
Meisl, S. (1970) Petrographische Studien im Grenzbe-reich Diagenese-Metamorphose. Abh. hess. L.-A. Bodenforsch., 57, 193.Google Scholar
Möller, P. (1983) Lanthanoids as a geochemical probe and problems in lanthanoid geochemistry—Distribution and behavior of lanthanoids in non-magmatic phases. In Systematics and properties of the lantha-nides (S. P. Sinha, ed.), NATO ASI series, C109, 561-616.Google Scholar
Morgan, J. W. and Wandless, G. A. (1980) Rare earth elements in some hydrothermal minerals: evidence for crystallographic control. Geochim. Cosmochim. Acta, 44, 973-80.Google Scholar
Nesbitt, B. E. (1992) Orogeny, crustal hydrogeology and the generation of epigenetic ore deposits in the Canadian Cordillera. Mineral. Petrol., 45, 153–79.Google Scholar
Norris, R. J. and Henly, R. W. (1976) Dewatering of a metamorphic pile. Geology, 4, 333-45.Google Scholar
Oncken, O. (1987) Heat flow and kinematics of the Rhenish Basin. In The Rhenisch Massif: Structure, Evolution, Mineral Deposits and Present Geodyna-mics (A. Vogel, H. Miller and R. Greiling, eds.), Viehweg, Mainz, 6378.Google Scholar
Oncken, O. (1993) Passive margin-continental arc collision, the case of the Rhenohercynian and Saxothuringian zones. Terra Nostra, 27.Google Scholar
Powell, R., Will, T. M., and Phillips, G. N. (1991) Metamorphism in Archean greenstone belts: calcu-lated fluid compositions for gold mineralisation. J. Metarn. Geol., 9, 141-50.Google Scholar
Redecke, P. (1992) Zur Geochemie und Genese variszischer und postvariszischer Buntmetallminerali-sation in der Nordeifel und der Niederrheinischen Bucht. Mitteilungen zur Mineralogie und Lagersttit-tenkunde, 41, 1152. Aachen.Google Scholar
Schulz-Dobrick, B. and Wedepohl, K.-H. (1983) The chemical composition of sedimentary deposits in the Rhenohercynian belt of Central Europe. In Intracon-tinentalfold belts (H. Martin and F. W. Eder, eds.), Springer, Berlin—Heidelberg, 211-30.Google Scholar
Schwartz, M. O. and Suronjo, (1990) Greizenisation and albitisation at the Tikus tin-tungsten deposit, Beli-tung, Indonesia. Econ. Geol., 65, 691713.Google Scholar
Stahl, W. (1971) Isotopen-Analysen an Carbonaten und Kohlendioxid-Proben aus dem EinfluBbereich und der weiteren Umgebung des Brahmscher Intrusivs und an hydrothermalen Carbonaten aus dem Sieger-land. Fortschr. Geol. Rheinld. Westf., 18, 429–38.Google Scholar
Tröger, W. E. and Trochim, H. D. (1966) In Optische Bestimmung der gesteinsbildenden Minerale (W. E. Tröger, ed.), Teil 2, Textband, 556453.Google Scholar
Vogtmann-Becker, J. (1990) Mobilisation und Aus-tausch von Elementen dutch Regionalmetamorphose in kambro-ordovizischen Sedimentgesteinen des Sta-velot-Venn-Massivs. Mitteilungen zur Mineralogie und Lagersttittenkunde, 34, 1179. Aachen.Google Scholar
Walshe, J. L. (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ. Geol., 81, 681703.Google Scholar
Walther, H. W. (1986) Federal Republic of Germany. In Mineral Deposits of Europe (F. W. Dunning etal.). Vol. 3, Central Europe, Inst. Min. Metal and Min. Soc., London, 175-301.Google Scholar
Walter, J. (1981) Fluide Einschliisse im Apatit des Carbonatits vom Kaiserstuhl (Oberrheingraben): Ein Beitrag zur Interpretation der Carbonatitgenese. Dissertation, 1-188, Univ. Karlsruhe.Google Scholar
Weber, K. (1981) The structural development of the Rheinisches Schiefergebirge. Geologie en Mijnbouw, 60, 149–59.Google Scholar
Wettig, E. (1974) Die Erzgäinge des nördlichen, rechtsrheinischen Schiefergebirges, ihr Inhalt und ihre tektonischen Zusammenhäinge. Clausthaler GeoL Abh., 19, 1363.Google Scholar
Zak, K. and Dobes, P. (1991) Stable isotopes and fluid inclusions in hydrothermal deposits: The Pribram ore region. Rozpr. Ceskoslovenske Akad. Ved, Academia, Praha, 3-109.Google Scholar
Zheng, Yong-Fei (1991) C-, Ound S-Isotopengeochemische Untersuchungen an hydrothermalen Lagerstütten des Harzes. Dissertation, 1-130, Univ. Göttingen.Google Scholar