Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:36:08.507Z Has data issue: false hasContentIssue false

The Tertiary Kærven Syenite Complex, Kangerdlugssuaq, East Greenland: Mineral Chemistry and Geochemistry

Published online by Cambridge University Press:  05 July 2018

Paul Martin Holm
Affiliation:
Institute of Petrology, Geologisk Centralinstitut, Øster Voldgade 10, DK-1350 København, Danmark
Niels-Ole Prægel
Affiliation:
Institute of Petrology, Geologisk Centralinstitut, Øster Voldgade 10, DK-1350 København, Danmark

Abstract

The Kærven syenite complex, which reflects the hitherto earliest recorded stages in the Tertiary of East Greenland, outcrops in the middle reaches of the Kangerdlugssuaq Fjord as a peripheral intrusion to the Kangerdlugssuaq intrusion. The rocks of the Kærven complex range from syenite through alkali feldspar quartz-syenite to alkali feldspar granite. The general sequence of crystallization of the Kærven magmas was: alkali feldspar ± olivine(Fa96−99) ± plagioclase(An41−11), clinopyroxene (augite, ferrosalite, ferrohedenbergite), quartz and amphibole. Whole-rock major and trace-element data show coherent geochemical trends which suggest comagmatism. The data reveal that the Kærven rocks are distinct from the rocks from the adjacent Kangerdlugssuaq intrusion (e.g. higher TiO2, FeOT in low-SiO2 samples, lower Na2O, approx. constant Zr/Nb). The mineral chemistry supports this conclusion, as the Kærven samples typically have calcic amphiboles and clinopyroxenes with a very limited Na-enrichment in contrast to the sodic trends of the Kangerdlugssuaq intrusion. Normative feldspar compositions plot near to the Ab-Or cotectic in the Q-Ab-Or system and a maximum pressure of crystallization of 3–5 kbar with moderate to low PH2O is indicated.

Trace elements preferently incorporated in plagioclase and alkali feldspar, i.e. Sr, Ba and Rb, show systematics which are not compatible with an evolution of the rock suite by crystal fractionation of these phases, though possibly alkali feldspar may be partially accumulated in a few very evolved rocks. Numerical calculations do not suggest a magmatic evolution by fractional crystallization of the observed phases. The variation of Sr, Ba and Rb as well as of the incompatible elements Nb, Zr and Th support a derivation of the rock suite mainly by mixing two components, a syenitic and a granitic end-member. It is concluded that magma mixing was the most significant process in the formation of the Kærven rock suite accompanied by some crystal fractionation. Evidence for crustal contamination is detected in a few samples from the outer part of the intrusion but has not affected the main suite of rocks.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: University Library of Copenhagen, Nørre Alle 49, DK-2200 København, Danmark.

References

Anderson, A.T. (1968) Am. J. Sci. 266, 704-27.CrossRefGoogle Scholar
Arth, J.G. (1976) J. Res. U.S. Geol. Surv. 4, 41-7.Google Scholar
Baitis, H.W., and Lindstrom, M.M. (1980) Contrib. Mineral. Petrol. 72, 367-86.CrossRefGoogle Scholar
Bowden, P., Batchelor, R.A., Chappe11, B. W., Didier, J., and Lameyre, J. (1984) Phys. Earth Planet. lnt. 35,111.CrossRefGoogle Scholar
Brooks, C.K. (1973) Mere. Am. Assoc. Petrol. Geol. 19, 150-60.Google Scholar
Brooks, C.K. and Gill, R.C.O. (1982) Mineral. Mag., 45-19.Google Scholar
Brooks, C.K. and Gill, R.C.O. and Nielsen, T.D.F. (1982) Meddr. Gronland Geosci. 6.Google Scholar
Brown, P.E., and Becker, S.M. (1986) Contrib. Mineral. Petrol. 92, 57-70.CrossRefGoogle Scholar
Buddington, A.F., and Lindsley, D.H. (1964) J. Petrol. 5, 310-57.CrossRefGoogle Scholar
Collins, W.J., Beams, S.D., White, A.J.R., and Chappel, B.W. (1982) Ibid. 80, 189-200.Google Scholar
Deer, W.A. (1976) In Geology of Greenland (A. Escher, and W. S. Watt, eds.), Gronlands Geologiske Undersogelser, Kobenhavn, pp. 406-29.Google Scholar
Deer, W.A. and Kempe, D.R.C. (1976) Meddr. Gronland 197, no. 4.Google Scholar
Deer, W.A. and Kempe, D.R.C. Howie, R.A., and Zussman, J. (1963) Rock-forming minerals. Vol. 2-Chain Silicates. Longman, London.Google Scholar
Harris, N.B.W. (1985) J. Afr. Earth Sci. 3, 83-8.Google Scholar
Hildreth, E.W. (1981) J. Geophys. Res. 86, 101-539..Google Scholar
Imeokparia, E.G. (1983) Chem. Geol. 40, 293-312.CrossRefGoogle Scholar
James, R.S., and Hamilton, D.S. (1969) Contrib. Mineral. Petrol. 21, 111-41.CrossRefGoogle Scholar
Kempe, D.R.C., and Deer, W.A. (1970) Meddr. GronIand 190, no. 3.Google Scholar
Deer, W.A., and Wager, L.R. (1970) Ibid. 190, no. 2.Google Scholar
Lameyre, J., and Bowden, P. (1982) J. Volcanol. Geotherm. Res. 14, 169-86.CrossRefGoogle Scholar
Larsen, L.M. (1976) J. Petrol. 17, 258-90.CrossRefGoogle Scholar
Leake, B.E. (1978) Am. Mineral. 63, 1023-52.Google Scholar
Leat, P.T., Jackson, S.E., Thorpe, R.S., and Stillman, C.J. (1986) J. Geol. Soc. London 143, 259-74.CrossRefGoogle Scholar
Leeman, W.P., and Phelps, D.W. (1981) J. Geophys. Res. 86, 101-939.Google Scholar
Le Roex, A.P., Dick, H.J.B., Erlank, A.J., Reid, A.M., Frey, F.A., and Hart, S.R. (1983) J. Petrol. 24, 267318.CrossRefGoogle Scholar
Lopez-Escobar, L., Frey, F.A., and Vergara, M. (1977) Contrib. Mineral. Petrol. 63, 199-228.CrossRefGoogle Scholar
Luth, W.C. (1969) Am. J. Sci. 267A, 325-41.Google Scholar
Luth, W.C. Jahns, R.H., and Tuttle, O.F. (1964) J. Geophys. Res. 69, 759-73.CrossRefGoogle Scholar
McBirney, A.R., and WiUiams, H. (1969) Mere. Geol. Soc. Am. 118, 1-197.Google Scholar
MacDonald, R., and Edge, R.A. (1970) Bull. Geol. Soc. Denmark 20, 38-58.Google Scholar
Mitchell, R.H., and Platt, R.G. (1978) J. Petrol. 19, 627-51.CrossRefGoogle Scholar
Mitchell, R.H., and Platt, R.G. (1982) Ibid. 23, 186-214.Google Scholar
Noble, D.C., and Parker, D.F. (1974) Bull. Volcanol. 38, 803-27.CrossRefGoogle Scholar
Norrisb, K., and Cbappell, B.W. (1977) In Physical methods in determinative mineralogy, 2nd e,d. (J. Zussman, ed.), Academic Press, London, pp. 201-72.Google Scholar
O'Halloran, D.A. (1985) J. Afr. Earth Sci. 3, 61-76.Google Scholar
Ojha, D.N. (1966) J. Geochim. Soc. India 1, 861-12.Google Scholar
Pankhurst, R.J., Beckinsale, R.D., and Brooks, C.K. (1976) Contrib. Mineral. Petrol. 54, 17-42.CrossRefGoogle Scholar
Parsons, I. (1981) J. Petrol. 22, 233-60.CrossRefGoogle Scholar
Pearce, J.A., and Norry, M.J. (1979) Contrib. Mineral. Petrol. 69, 33-47.CrossRefGoogle Scholar
Harris, N.B.W., and Tindle, A.G. (1985) J. Petrol. 25, 956-83.Google Scholar
Platt, R.G., and Woolley, A.R. (1986) Mineral. Mag. 50, 85-99.CrossRefGoogle Scholar
Powell, M. (1978) Lithos 11, 991-20.CrossRefGoogle Scholar
Powell, R., and Powell, M. (1977) Mineral. Mag. 41, 257-63.CrossRefGoogle Scholar
Simkin, T., and Smith, J.V. (1970) J. Geol. 78, 304– 25.CrossRefGoogle Scholar
Sorensen, I. (1975) Rapp. Gronlands. Geol. Unders. 75, 16-18.Google Scholar
Spencer, K.J., and Lindsley, D.H. (1981) Am. Mineral. 66, 118-920..Google Scholar
Stephenson, D., and Upton, B.G.J. (1982) Mineral. Mag. 46, 283-300.CrossRefGoogle Scholar
Streckeisen, A.L. (1976) Earth Sci. Rev. 12, 133.CrossRefGoogle Scholar
Thomas, W.M. (1982) Am. J. Sei. 282, 136-64.Google Scholar
Turtle, O.F., and Bowen, N.L. (1958) Mem. Geol. Soc. Am. 74, 1-153.Google Scholar
Villari, L. (1974) Bull. Volcanol. 38, 680-724.CrossRefGoogle Scholar
Whalen, J.B. (1983) Geochim. Cosmochim. Acta, 47, 144-357.Google Scholar
Wood, D.A. (1978) J. Petrol. 19, 399-436.CrossRefGoogle Scholar