Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T11:52:10.675Z Has data issue: false hasContentIssue false

Thermal decomposition of amosite, crocidolite, and biotite

Published online by Cambridge University Press:  05 July 2018

P. G. Rouxhet
Affiliation:
Laboratoire de Physico-Chimie Minérale, de Croylaan 42, 3030 Heverlee, Belgium
J. L. Gillard
Affiliation:
Laboratoire de Physico-Chimie Minérale, de Croylaan 42, 3030 Heverlee, Belgium
J. J. Fripiat
Affiliation:
Laboratoire de Physico-Chimie Minérale, de Croylaan 42, 3030 Heverlee, Belgium

Summary

The oxidation of amosite, crocidolite, and biotite has been determined at temperatures up to nearly 900 °C under both a vacuum (10−2 mm Hg) and oxygen (10 and 600 mm Hg). Infrared spectra gave the loss of constitutional hydroxyl under these conditions. The loss of tensile strength of the amphiboles with increasing temperature seems to be due to thermal decomposition. For the three minerals oxidation takes place progressively over a broad temperature range. Under vacuum there is a certain temperature above which the ferric iron previously formed is reduced; this temperature corresponds to the completion of the loss of hydroxyl. The crocidolite anhydride in the literature is most probably an oxycrocidolite formed by dehydrogenation, the truly dehydroxylated zones being amorphous.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Chargé de recherche du F.N.R.S.

2

Université Catholique de Louvain and M.R.A.C. (Tervuren).

References

Addison, (C.C.), Addison, (W.E.), NEAL (G. a.), and Sharp, (J.H.), 1962. Journ. Chem. Soc. 1468.CrossRefGoogle Scholar
Addison, (C.C.), Addison, (W.E.), and Sharp, (J.H.), 1962a. Clay Min. Bull. 5, 73.CrossRefGoogle Scholar
Addison, (C.C.), Addison, (W.E.), and Sharp, (J.H.), 1962b. J. Chem. Soc. 3693.CrossRefGoogle Scholar
Addison, (C.C.), Addison, (W.E.), and Sharp, (J.H.), 1968. Pap. Proc. LM.A. 5th Gen. Meeting, 305.Google Scholar
Addison, (C.C.), and White, (A.D.), 1968. Min. Mug. 36, 791.Google Scholar
Brindley, (G.W.) and Youell, (R.F.), 1953. Ibid. 30, 57.Google Scholar
Burman, (D.), 1967. The Physics and Chemistry of Asbestos Minerals, Oxford Conference, 2.Google Scholar
Burns, (R.G.) and Prentice, (F.J.), 1968. Amer. Mitt. 53, 770.Google Scholar
Burns, (R.G.) and Prentice, (F.J.), and STRENS (R. G. I.), 1966. Science, 153, 890.CrossRefGoogle Scholar
Ernst, (W.G.) and WA1 (C. M.), 1970. Amer. Min. 55, 1226.Google Scholar
Freeman, (A.G.), 1966. Min. Mug. 35, 953.Google Scholar
Hodgson, (A.A.), Freeman, (A.G.), and TAYLOR (H. F. W.), 1965a. Ibid. 35, 5.Google Scholar
Hodgson, (A.A.), Freeman, (A.G.), and Taylor, (H. F. W.), 1965b. ibid. 455.Google Scholar
Ingamells, (C.O.), 1960. Contribution no. 59-67, College of Mineral Industries, Pennsylvania State University.Google Scholar
Patterson, (J.H.) and O'CONNOR, (D.J.), 1966. Australian Journ. Chem. 19, 1 155.CrossRefGoogle Scholar
Robert, (M.) and Pedro, (G.), 1968. Compt. Rend. Acad. Sei. Paris, 267, 1805.Google Scholar
Rouxhet, (P. G.), 1969. Optiea Pura y Applicada, 2, 76.Google Scholar
Rouxhet, (P. G.), 1970. Clay Min. 8, 375.CrossRefGoogle Scholar
Schoenfelder, (J.), 1965. Mdmoire, Conservatoire National des Arts et Mdtiers, Mulhouse.Google Scholar
Vedder, (W.), 1964. Amer. Min. 49, 736.Google Scholar
Vedder, (W.), and WILKINS (R. W. T.), 1969. Ibid. 54, 482.Google Scholar
Wilkins, (R. W. T.) and Vedder, (W.), 1969. Proc. 6th Int. Syrup. Reactiv. Solids, editor Mitchell, J. W., Wiley Intersc., 227.Google Scholar