Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T00:51:26.573Z Has data issue: false hasContentIssue false

Trace element geochemistry of parts of the Closepet granite, Mysore State, India1

Published online by Cambridge University Press:  05 July 2018

V. Divakara Rao
Affiliation:
National Geophysical Research Institute, Hyderabad-7, A.P., India
U. Aswathanarayana
Affiliation:
Centre of Advanced Study in Geology, University of Saugar, Sagar, M.P., India
M. N. Qureshy
Affiliation:
National Geophysical Research Institute, Hyderabad-7, A.P., India

Summary

Trace elements in twenty samples of the Closepet granite (grey and pink varieties) and the related rocks have been determined by neutron activation analysis (Th, Rb, and Cs), fluorometry (U), flame-photometry (K), and emission spectroscopy (Pb, Sr). The trace element contents of the grey and pink varieties are generally similar. An analysis of the magnitudes of the trace element and other ratios (K/Rb, 235; Th/U, 6·4; U/K (× 104), 0·7; K/Cs (× 10−4), 3·6; Th/K (× 104), 5·3; Fe2O3/(FeO+Fe2O3), 0·27) as well as 87Sr/86Sr initial ratio (0·705; Crawford, 1969) of the Closepet granite indicate two possible modes of genesis: Either the granite magma was not highly differentiated and the vapour phase was relatively insignificant; the crystallization of the magma took place under essentially non-oxidizing conditions; the pink variety, which followed the grey variety, crystallized under essentially the same conditions as the grey variety. Or the Closepet granite had a two-stage history—palingenesis (starting from the Peninsular gneiss) and metasomatism involving the enrichment in K, Rb, Pb, and Th and depletion of Sr and Cs, among others.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution to the Indian National Programme of the International Upper Mantle Project.

2

Work reported in this communication forms part of the Ph.D. thesis of the author.

References

Adams, (J.A.S.), Osmond, (J.K.), and Rogers, (J.J.W.), 1959. In Ahrens, (L.H.) Physics and Chemistry of the Earth. 3, 298. Pergamon Press, London.CrossRefGoogle Scholar
Adams, (J.A.S.), Osmond, (J.K.), and Rogers, (J.J.W.), and Lowder, (W.M.), 1964. The Natural Radiation Em, ironment, Univ. Chicago Press, 1031.Google Scholar
Attrens, (L.H.), 1965. In Hamilton, (E.I.), Applied Geochronology, vii. Acad. Press, New York.Google Scholar
Aswathanarayana, (U.), 1959. Bull. Geol. Soc. Amer. 70, 111.CrossRefGoogle Scholar
Aswathanarayana, (U.), 1971. Econ. Geol. 66, 1078.CrossRefGoogle Scholar
Bhabha, (H.J.) and Prasad, (N.B.), 1959. Bhagiratha (India), 69, 15.Google Scholar
Birch, (F.), 1954. In Faul, (H.), Nuclear Geology, 148. John Wiley, New York.Google Scholar
Crawford, (A.R.), 1969. Journ. Geol. Soc. India, 10 (2), 117.Google Scholar
Divakara RAO, (V.), Aswathanarayana, (U.), and Qureshy, (M.N.), 1969. Bull. Nat. Geophys. Res. Inst. (India), 7 (4), 145.Google Scholar
Divakara RAO, (V.), Aswathanarayana, (U.), and Qureshy, (M.N.), 1972. Journ. Geol. Soc. India 13, 1.Google Scholar
Fairbairn, (H.W.), Moorbath, (S.), Ramo, (A.O.), P1NSON (W. H., Jr.), and Hurley, (P.M.), 1967. Earth Planet. Sci. Lett. 2, 321.CrossRefGoogle Scholar
Flanagan, (F.J.), 1969. Geochimiea Acta, 33, 8L.Google Scholar
Gangadharam, (E.V.) and Parekh, (P.P.), 1968. Radiochim. Acta, 10, 65.CrossRefGoogle Scholar
Gangadharam, (E.V.) and Parekh, (P.P.), and Reddy, (G.R.), 1969. Ibid. 11, 90.Google Scholar
Gangadharam, (E.V.) and Aswathanarayana (U .), 1969. Trans. Amer. Geophys. Union, 50, 341.Google Scholar
Grimaldi, (F.S.), May, (I.), and Fletcher, (M.H.), 1952. U.S. Geol. Surv. Circ. 199, 20.Google Scholar
Heier, (K.S.) and Adams, (J.A.S.), 1959. In Ahrens, (L.H.) Physics and Chemistry of the Earth, 5, 253. Pergamon Press, London.CrossRefGoogle Scholar
Heier, (K.S.) and Adams, (J.A.S.), and Brooks, (C.), 1966. Geochimiea Acta, 30, 633.CrossRefGoogle Scholar
Hurley, (P.M.), Hugres, (T.C.), Faure, (G.), Fairbairn, (H.W.), and Pinson, (W.H.) 1962. Yourn. Geophys. Res. 67, 5325.Google Scholar
Kolbe, (P.) and Taylor, (S.R.), 1966. Journ. Geol. Soc. Australia, 13, 1.CrossRefGoogle Scholar
Ragland, (P.C.), Billings, (G.K.), and Adams, (J.A.S.), 1967. Geochimica Acta, 31, 17.CrossRefGoogle Scholar
Rogers, (J.J.W.), 1964. In Adams, (J.A.S.) and Lowder, (W.M.), Natural Radiation Environment, 5 I. Univ. Chicago. Press.Google Scholar
Rogers, (J.J.W.), Adams, (J.A.S.), and Gatlin, (B.), 1965. Amer. Yourn. Sci. 263, 817.Google Scholar
Rogers, (J.J.W.), 1969. In Wedepohl, (K.H.), Handbook of Geochemistry, 2 (I), Sec. 90 and 92. Springer Verlag, Berlin.Google Scholar
Saha, (A.K.), Sankaran, (A.V.), and Bhattacharya, (T.K.), 1970. Proc. Ind. Nat. Sci. Aead., 36A, No. 6, 392.Google Scholar
Shackleton, (R.M.) 1970. Proc. Geol. Assn. 81 (3), 549.CrossRefGoogle Scholar
Tilton, (G.R.), Patterson, (C.), Brown, (H.), Inghram, (M.), Hayden, (R.), Hess, (D.), and LARSEN (E., Jr.), 1955. Bull. Geol. Soc. Amer. 66, 1131.CrossRefGoogle Scholar
Wasserburg, (G.J.), Macdonald, (G.J.F.), Hoyle, (F.), and Fowler, (W.A.), 1964. Science, 143 465.CrossRefGoogle Scholar
Whiteield, (J.M.), Rogers, (J.J.W.), and Adams, (J.A.S.), 1959. Geochimica Acta, 17, 248.CrossRefGoogle Scholar
Wollenberg, (H.A.) and Smith, (A.R.), 1968. Journ. Geophys. Res. 73, 1481.10.1029/JB073i004p01481CrossRefGoogle Scholar