Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:07:24.606Z Has data issue: false hasContentIssue false

Use of image analysis in the measurement of finite strain by the normalized Fry Method: geological implications for the ‘Zone Houillère’ (Briançonnais zone, French Alps)

Published online by Cambridge University Press:  05 July 2018

L. Ailleres
Affiliation:
C.R.P.G.-C.N.R.S., 15 rue N-D des Pauvres, B.P. 20, 54501 Vandoeuvre les Nancy, France
M. Champenois
Affiliation:
C.R.P.G.-C.N.R.S., 15 rue N-D des Pauvres, B.P. 20, 54501 Vandoeuvre les Nancy, France
J. Macaudiere
Affiliation:
C.R.P.G.-C.N.R.S., 15 rue N-D des Pauvres, B.P. 20, 54501 Vandoeuvre les Nancy, France
J.M. Bertrand
Affiliation:
C.R.P.G.-C.N.R.S., 15 rue N-D des Pauvres, B.P. 20, 54501 Vandoeuvre les Nancy, France

Abstract

Image analysis techniques are used to quantify finite strain in microconglomerates from the ‘Zone Houillère’ (Briançonnais Zone, French Alps) using the normalized Fry method. Two different techniques have been developed to extract the necessary parameters from quartz grains: the first uses an interactive videographic image analyser linked to a digitizer, and the second uses a semi-automatic image analyser algorithm working on numeric images. Comparison between these two techniques allows the data provided by the latter to be validated. Semi-automated image analysis is then employed to compute the characteristics of the finite strain ellipse as defined by the normalized Fry method. This has been tested on natural and simulated fabrics and gives accurate results. Finally, these techniques have been applied to samples from the French Alps, in an attempt to correlate the regional pattern of finite strain with deep seismic reflectors. This paper presents the preliminary results using finite strain data determined by image analysis processing.

Type
Image analysis
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Alternative address: E.N.S.G., 94 ave De Lattre De Tassigny, BP 452, 54501 Nancy, France.

References

Ailléres, M. and Champenois, M. (1994) Refinements to the Fry method (1979) using image processing. J. Struct. Geol., 16, 1327-30.CrossRefGoogle Scholar
Bayer, R., Cazes, M., Dal Piaz, G. V., Damotte, B., Elter, G., Gosso, G., Hirn, A., Lanza, R., Lombardo, B., Mugnier, J.L., Nicolas, A., Nicolich, R., Polino, R., Roure, F., Sacchi, R., Scarascia, S,, Tabacco, I., Tapponier, P., Tardy, M., Taylor, M., Thouvenot, F., Torreilles, G. and Villien, A. (1987) Premiers résultats de la traversée des Alpes occidentales par sismique reflexion verticale (Programme ECORSCROP) Comptes Rendus de l'Académie des Sciences (Paris), Série II, 305, 1461-70.Google Scholar
Champenois, M. (1989) Apport de l'analyse interactive d'images à l'étude de l'évolution structurale de zones déformées: application à une zone de cisaillement pan-africaine de l'Adrar des Iforas (Mali) et aux orthogneiss du massif du Grand Paradis (Italie). Thèse INPL, 210 pp.Google Scholar
Coster, M. & Chermant, J.L. (1985) Précis d'analyse d'images. Academic Press, Ed. du C.N.R.S., 521 pp.Google Scholar
Dunnet, D. (1969) A technique of finite strain analysis using elliptical particles. Tectonophysics, 7, 117-36.CrossRefGoogle Scholar
Erslev, E.A. (1988) Normalized center to center strain analysis of packed aggregates. J. Struct. Geol., 10, 201-9.CrossRefGoogle Scholar
Flinn, D. (1962) On folding during 3-D progressive deformation. Q. J. Geol. Soc. Lond., 118, 345-428.Google Scholar
Fry, N. (1979) Random point distributions and strain measurement in rocks. Tectonophysics, 60, 89-105.CrossRefGoogle Scholar
Lapique, F. (1987) Traitement informatique de la déformation finie et interptétation de l'évolution tectonique Pan-africaine de la région de Timgaouine (Hoggar, Algérie). Thèse Univ. Nancy I, 224 pp.Google Scholar
Lapique, F., Champenois, M. and Cheilletz, A. (1988) Un analyseur vidéographique interactif: description et application. Bull. Soc. Géol. Fr., 18, 1387-93.Google Scholar
Mugnier, J.L., Loubat, H. and Cannic, S. (1993) Correlation of seismic images and geology at the boundary between internal and external domains of the western Alps. Bull, Soc. Géol. Fr., 5, 697-708.Google Scholar
Nicolas, A., Hirn, A., Nicolich, R., Polino, R., ECORSCROP Working Group. (1990) Lithospheric wedging in the western Alps inferred from the ECORS-CROP traverse. Geology, 18, 587-90.2.3.CO;2>CrossRefGoogle Scholar
Panozzo, R.H. (1983) Two-dimensionnal analysis of shape fabric using projections of digitized lines in a plane. Tectonophysics, 95, 279-94.CrossRefGoogle Scholar
Panozzo, R. (1984) Two-dimensional strain from the orientation of lines in a plane. J. Struct. Geol., 6, 215-21.CrossRefGoogle Scholar
Ramsay, J.G. (1967) Folding and fracturing of rocks. Mc Graw Hill, New York, 568 pp.Google Scholar
Ramsay, J.G. and Wood, D.S. (1973) The geometric effects of volume change during deformation processes, Tectonophysics, 16, 263-77.CrossRefGoogle Scholar
Serra, P. (1982) Image analysis and mathematical morphology. Academic press, 568 pp.Google Scholar
Tardy, M., Deville, E., Fudral S., Ménard Thouvenot, G. and Vialon, F., P. (1990) Interprétation structurale des données du profil de sismique réflexion profonde ECORS-CROP Alpes entre le front pennique et la ligne du Canavese. In Roure, F., Heiztman, P. and Polino, R., Eds., Mdm. de la Soc. g∼ol. de France, 186. Contribution C.R.P.G., n ∼ 1046.Google Scholar