Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T17:41:36.553Z Has data issue: false hasContentIssue false

Zeolites at high pressure: A review

Published online by Cambridge University Press:  05 July 2018

G. D. Gatta*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
Y. Lee
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy

Abstract

This is a review of the elastic behaviour and pressure (P)-induced structural evolution of zeolites and presents a comparative analysis of the deformation mechanisms of the Si/Al-framework and the rearrangement of the extra-framework species in response to applied pressure. The interaction between P-transmitting fluids and zeolites, which can lead to phenomena such as ‘P-induced over-hydration’, is described. The comparative elastic analysis and the high-P structural data of zeolites reported so far allow us to make some generalizations: (1) The range of compressibility among this class of openframework silicates is large, with bulk moduli ranging between 15 and 70 GPa; (2) Microporosity does not necessarily imply high compressibility, as several zeolites are less compressible than other nonzeolitic rock-forming minerals; (3) Compressibilities of zeolites do not seem to be directly related to microporosity, at least if we model microporosity with the ‘framework density’; (4) The flexibility observed in zeolites under hydrostatic compression is mainly governed by tilting of rigid tetrahedra around O atoms that behave as hinges within the framework. Pressure-induced tilting commonly leads to continuous rearrangement of the framework without any phase transition. More rarely, tilting induces displacive phase transitions and isothermal P-induced reconstructive phase transitions (i.e. with change in framework topology), have not been reported in this class of materials; (5) Deformation mechanisms in response to applied pressure are generally dictated by the topological configuration of the framework rather than the Si/Al-distribution or the extra-framework content. The channel content governs the compressibility of the cavities, leading to different unit-cell-volume compressibilities in isotypic structures.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackley, M.W., Rege, S.U. and Saxena, H. (2003) Application of natural zeolites in the purification and separation of gases. Microporous and Mesoporous Materials, 61, 2542.CrossRefGoogle Scholar
Angel, R.J. (2000) Equation of state. Pp. 35–59 in: High-Temperature and High-Pressure Crystal Chemistry (R.M. Hazen, R.T. Downs, editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of America and the Geochemical Society, Washington, DC. Google Scholar
Angel, R.J., Allan, D.R., Miletich, R. and Finger, L.W. (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. Journal of Applied Crystallography, 30, 461466.CrossRefGoogle Scholar
Angel, R.J., Bujak, M., Zhao, J., Gatta, G.D. and Jacobsen, S.J. (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. Journal of Applied Crystallography, 40, 2632.CrossRefGoogle Scholar
Armbruster, T. and Gunter, M.E. (2001) Crystal structures of natural zeolites. Pp. 1–57 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Arletti, R., Ferro, O., Quartieri, S., Sani, A., Tabacchi, G. and Vezzalini, G. (2003) Structural deformation mechanisms of zeolites under pressure. American Mineralogist, 88, 14161422.CrossRefGoogle Scholar
Arletti, R., Quartieri, S. and Vezzalini, G. (2010) Elastic behavior of zeolite boggsite in silicon oil and aqueous medium: A case of high-pressure-induced over-hydration. American Mineralogist, 95, 12471256.CrossRefGoogle Scholar
Arletti, R., Vezzalini, G., Morsli, A., Di Renzo, F., Dmitriev, V. and Quartieri, S. (2011) Elastic behavior of MFI-type zeolites: 1 – Compressibility of Na-ZSM-5 in penetrating and non-penetrating media. Microporous and Mesoporous Materials, 142, 696707.CrossRefGoogle Scholar
Baerlocher, C., McCusker, L.B. and Olson, D.H. (2007) Atlas of Zeolite Framework Types (sixth edition), Elsevier, Amsterdam, 84 pp.CrossRefGoogle Scholar
Ballone, P., Quartieri, S., Sani, A. and Vezzalini, G. (2002) High-pressure deformation mechanism in scolecite: A combined computational-experimental study. American Mineralogist, 87, 11941206.CrossRefGoogle Scholar
Baur, W.H. (1992) Self-limiting distortion by antirotating hinges is the principle of flexible but noncollapsable framework. Journal of Solid State Chemistry, 97, 243247.CrossRefGoogle Scholar
Baur, W.H., Joswig, W. and Müller, G. (1996) Mechanisms of the feldspar framework: crystal structure of Li-feldspar. Journal of Solid State Chemistry, 12, 1223.CrossRefGoogle Scholar
Baur, W.H. and Fischer, R.X. (editors) (2000) Zeolite- Type Crystal Structures and their Chemistry. Zeolite Structure Codes ABW to CZP. Landolt-Bö rnstein, Subvolume B, Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry. Microporous and other Framework Materials with Zeolite-Type Structures, 14B. Springer-Verlag, Berlin. p. 459.Google Scholar
Benusa, M.T., Angel, R.J. and Ross, N.L. (2005) Compression of albite, NaAlSi3O8. American Mineralogist, 90, 11151120.CrossRefGoogle Scholar
Besson, J.M., Nelmes, R.J., Hamel, G., Loveday, J.S., Weill, G. and Hull, S. (1992) Neutron powder diffraction above 10 GPa. Physica B: Physics of Condensed Matter, 180, 907910.CrossRefGoogle Scholar
Betti, C., Fois, E., Mazzuccato, E., Medici, C., Quartieri, S., Tabacchi, G., Vezzalini, G. and Dmitriev, V. (2007) Gismondine under HP: Deformation mechanism and re-organization of the extra-framework species. Microporous and Mesoporous Materials, 103, 190209.CrossRefGoogle Scholar
Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809824.CrossRefGoogle Scholar
Bish, D.L. and Carey, J.W. (2001) Thermal behavior of natural zeolites. Pp. 403–452 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Bish, D.L., Vaniman, D.T., Chipera, S.J. and Carey, J.W. (2003) The distribution of zeolites and their effects on the performance of a nuclear waste repository at Yucca Mountain, Nevada, USA. American Mineralogist, 88, 18891902.Google Scholar
Colella, C. (2011) A critical reconsideration of biomedical and veterinary applications of natural zeolites. Clay Minerals, 46, 295309.CrossRefGoogle Scholar
Colligan, M., Forster, P.M., Cheetham, A.K., Lee, Y., Vogt, T. and Hriljac, J.A. (2004) Synchrotron X-ray powder diffraction and computational investigation of purely siliceous zeolite Y under pressure. Journal of American Chemical Society, 126, 1201512022.CrossRefGoogle Scholar
Colligan, M., Lee, Y., Vogt, T., Celestian, A., Parise, J.B., Marshall, W. and Hriljac, J. (2005) Highpressure Neutron powder diffraction study of superhydrated natrolite. Journal of Physical Chemistry B, 109, 1822318225.CrossRefGoogle Scholar
Comodi, P., Mellini, M. and Zanazzi, P.F. (1990) Scapolites: Variation of structure with pressure and possible role in the storage of fluids. European Journal of Mineralogy, 2, 195202.CrossRefGoogle Scholar
Comodi, P., Gatta, G.D. and Zanazzi, P.F. (2001) Highpressure structural behavior of heulandite. European Journal of Mineralogy, 13, 497505.CrossRefGoogle Scholar
Comodi, P., Gatta, G.D. and Zanazzi, P.F. (2002) Highpressure behaviour of scolecite. European Journal of Mineralogy, 14, 567574.CrossRefGoogle Scholar
Comodi, P., Gatta, G.D. and Zanazzi, P.F. (2003) Effects of pressure on the structure of bikitaite. European Journal of Mineralogy, 15, 247–225.CrossRefGoogle Scholar
Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R. A., Tillmanns, E. and Vezzalini, G. (1997) Recommended nomenclature for zeolite minerals: report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on new minerals and minerals names. The Canadian Mineralogist, 35, 15711606.Google Scholar
Cruciani, G. (2006) Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67, 19731994.CrossRefGoogle Scholar
Cruciani, G. and Gualtieri, A. (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist, 84, 112119.CrossRefGoogle Scholar
Ferro, O., Quartieri, S., Vezzalini, G., Fois, E., Gamba, A. and Tabacchi, G. (2002) High-pressure behaviour of bikitaite: An integrated theoretical and experimental approach. American Mineralogist, 87, 14151425.CrossRefGoogle Scholar
Fois, E., Tabacchi, G., Quartieri, S. and Vezzalini, G. (1999) Dipolar host/guest interactions and geometrical confinement at the basis of the stability of onedimensional ice in zeolite bikitaite. Journal of Chemical Physics, 111, 355359.CrossRefGoogle Scholar
Fois, E., Gamba, A., Tabacchi, G., Arletti, R., Quartieri, S. and Vezzalini, G. (2005) The “template” effect of the extra-framework content on zeolite compression: The case of yugawaralite. American Mineralogist, 90, 2835.CrossRefGoogle Scholar
Fois, E., Gamba, A., Medici, C., Tabacchi, G., Quartieri, S., Mazzucato, E., Arletti, R., Vezzalini, G. and Dmitriev, V. (2008) High pressure deformation mechanism of Li-ABW: Synchrotron XRPD study and ab initio molecular dynamics simulations. Microporous and Mesoporous Materials, 115, 267280.CrossRefGoogle Scholar
Fütterer, K., Depmeier, W., Altdorfer, F., Behrens, P. and Felsche, J. (1994) Compression mechanism in trioxane silica sodalite [Si12O242C3H6O3 . Zeitschrift für Kristallographie, 209, 517523.Google Scholar
Galli, E., Vezzalini, G., Quartieri, S., Alberti, A. and Franzini, M. (1997) Mutinaite, a new zeolite from Antartica: The natural counterpart of ZSM-5. Zeolites, 19, 318322.CrossRefGoogle Scholar
Gatta, G.D. (2005) A comparative study of fibrous zeolites under pressure. European Journal of Mineralogy, 17, 411422.CrossRefGoogle Scholar
Gatta, G.D. (2008) Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Zeitschrift für Kristallographie, 223, 160170.Google Scholar
Gatta, G.D. (2010a) Extreme deformation mechanisms in open-framework silicates at high-pressure: Evidence of anomalous inter-tetrahedral angles. Microporous and Mesoporous Materials, 128, 7884.CrossRefGoogle Scholar
Gatta, G.D. (2010b) Microporous materials at high pressure: Are they really soft? Pp. 481–491 in: High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications (E. Boldyreva and P. Dera, editors). NATO Science for Peace and Security – Series B (Physics and Biophysics), Springer Science. http://dx.doi.org/10.1007/978-90-481-9258-8_39. CrossRefGoogle Scholar
Gatta, G.D. and Lee, Y. (2006) On the elastic behaviour of zeolite mordenite: a synchrotron powder diffraction study. Physics and Chemistry of Minerals, 32, 726732.CrossRefGoogle Scholar
Gatta, G.D. and Lee, Y. (2007) Anisotropic elastic behaviour and structural evolution of zeolite phillipsite at high pressure: A synchrotron powder diffraction study. Microporous and Mesoporous Materials, 105, 239250.CrossRefGoogle Scholar
Gatta, G.D. and Lee, Y. (2008) Pressure-induced structural evolution and elastic behaviour of Na6Cs2Ga6Ge6O24·Ge(OH)6 variant of cancrinite: a synchrotron powder diffraction study. Microporous and Mesoporous Materials, 116, 5158.CrossRefGoogle Scholar
Gatta, G.D. and Wells, S.A. (2004) Rigid unit modes at high pressure: an explorative study of a fibrous zeolite-like framework with EDI topology. Physics and Chemistry of Minerals, 31, 465474.CrossRefGoogle Scholar
Gatta, G.D. and Wells, S.A. (2006) Structural evolution of zeolite levyne under hydrostatic and nonhydrostatic pressure: geometric modelling. Physics and Chemistry of Minerals, 33, 243255.CrossRefGoogle Scholar
Gatta, G.D., Comodi, P. and Zanazzi, P.F. (2003) New insights on high-pressure behaviour of microporous materials from X-ray single-crystal data. Microporous and Mesoporous Materials, 61, 105115.CrossRefGoogle Scholar
Gatta, G.D., Boffa Ballaran, T., Comodi, P. and Zanazzi, P.F. (2004a) Isothermal equation of state and compressional behaviour of tetragonal edingtonite. American Mineralogist, 89, 633639.CrossRefGoogle Scholar
Gatta, G.D., Boffa Ballaran, T., Comodi, P. and Zanazzi, P.F. (2004b) Comparative compressibility and equation of state of orthorhombic and tetragonal edingtonite. Physics and Chemistry of Minerals, 31, 288298.CrossRefGoogle Scholar
Gatta, G.D., Comodi, P., Zanazzi, P.F. and Boffa Ballaran, T. (2005) Anomalous elastic behavior and high-pressure structural evolution of zeolite levyne. American Mineralogist, 90, 645652.CrossRefGoogle Scholar
Gatta, G.D., Nestola, F. and Boffa Ballaran, T. (2006) Elastic behavior, phase transition and pressure induced structural evolution of analcime. American Mineralogist, 91, 568578.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N., Boffa Ballaran, T. and Pavese, A. (2008a) Leucite at high-pressure: elastic behaviour, phase stability and petrological implications. American Mineralogist, 93, 15881596.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N., Zanazzi, P.F., Rieder, M., Drabek, M., Weiss, Z. and Klaska, R. (2008b) Synthesis and crystal structure of the feldspathoid CsAlSiO4: an open-framework silicate and potential nuclear waste disposal phase. American Mineralogist, 93, 988995.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N., Boffa Ballaran, T., Sanchez-Valle, C. and Pavese, A. (2009a) Elastic behavior and phase-stability of pollucite, a potential host for nuclear waste. American Mineralogist, 94, 11371143.CrossRefGoogle Scholar
Gatta, G.D., Sartbaeva, A. and Wells, A.S. (2009b) Compression behaviour and flexibility window of the analcime-like feldspathoids: experimental and theoretical findings. European Journal of Mineralogy, 21, 571580.CrossRefGoogle Scholar
Gatta, G.D., Lotti, P., Nestola, F. and Pasqual, D. (2012a) On the high-pressure behavior of gobbinsite, the natural counterpart of the synthetic zeolite Na–P2. Microporous and Mesoporous Materials, 163, 259269.CrossRefGoogle Scholar
Gatta, G.D., Merlini, M., Lotti, P., Lausi, A. and Rieder, M. (2012b) Phase stability and thermo-elastic behavior of CsAlSiO4 (ABW): A potential nuclear waste disposal material. Microporous and Mesoporous Materials, 163, 147152.CrossRefGoogle Scholar
Gillet, P., Malézieux, J.M. and Itié, J.P. (1996) Phase changes and amorphization of zeolites at high pressure: The case of scolecite and mesolite. American Mineralogist, 81, 651657.CrossRefGoogle Scholar
Goryainov, S.V. (2005) Pressure-induced amorphization of Na2Al2Si3O10·2H2O and KAlSi2 O6 zeolites. Physica Status Solidi, 202, R25–R27.CrossRefGoogle Scholar
Gottardi, G. and Galli, E. (1985) Natural Zeolites. Springer-Verlag, Berlin, 409 pp.CrossRefGoogle Scholar
Greaves, G.N., Meneau, F., Sapelkin, A., Colyer, L.M., Gwynn, I.A., Wade, S. and Sankar, G. (2003) The rheology of collapsing zeolites amorphized by temperature and pressure. Nature Materials, 2, 622629.CrossRefGoogle ScholarPubMed
Gulín-González, J. and Suffritti, G.B. (2004) Amorphization of calcined LTA zeolites at high pressure: a computational study. Microporous and Mesoporous Materials, 69, 127134.CrossRefGoogle Scholar
Haines, J., Levelut, C., Isambert, A., Hebert, P., Kohara, S., Keen, D.A., Hammouda, T. and Andrault, D. (2009) Topologically ordered amorphous silica obtained from the collapsed siliceous zeolite, silicalite-1-F: A step toward “perfect” glasses. Journal of the American Chemical Society, 131, 1233312338.CrossRefGoogle ScholarPubMed
Haines, J., Cambon, O., Levelut, C., Santoro, M., Gorelli, F. and Garbarino, G. (2010) Deactivation of pressure-induced amorphization in silicalite SiO2 by insertion of guest species. Journal of American Chemical Society, 132, 88608861.CrossRefGoogle ScholarPubMed
Hay, R.L. and Sheppard, R.A. (2001) Occurrence of zeolites in sedimentary rocks: An overview. Pp. 217–234 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Hazen, R.M. (1983) Zeolite molecular sieve 4A: anomalous compressibility and volume discontinuities at high pressure. Science, 219, 10651067.CrossRefGoogle ScholarPubMed
Hazen, R.M. and Finger, L.W. (1979) Polyhedral tilting: a common type of pure displacive phase transition and its relationship to analcite at high pressure. Phase Transitions, 1, 122.CrossRefGoogle Scholar
Hazen, R.M. and Finger, L.W. (1984) Compressibility of zeolite 4A is dependent on the molecular size of the hydrostatic pressure medium. Journal of Applied Physics, 56, 18381840.CrossRefGoogle Scholar
Hazen, R.M. and Sharp, Z.D. (1988) Compressibility of sodalite and scapolite. American Mineralogist, 73, 11201122.Google Scholar
Huang, Y. and Havenga, E.A. (2001) Why do zeolites with LTA structure undergo reversible amorphization under pressure? Chemical Physics Letter, 345, 6571.CrossRefGoogle Scholar
Isambert, A., Angot, E., Hébert, P. Haines, J., Levelut, C., Le Parc, R., Ohishi, Y., Koharad, S. and Keenef, D.A. (2008) Amorphization of faujasite at high pressure: an X-ray diffraction and Raman spectroscopy study. Journal of Material Chemistry, 18, 57465752.CrossRefGoogle Scholar
Jang, Y.N., Kao, C.C., Vogt, T. and Lee, Y. (2010) Anisotropic compression of a synthetic potassium aluminogermanate zeolite with gismondine topology. Journal of Solid State Chemistry, 183, 23052308.CrossRefGoogle Scholar
Kahlenberg, V., Fischer, R.X. and Baur, W.H. (2001) Symmetry and structural relationships among ABWtype materials. Zeitschrift für Kristallographie, 216, 489494.Google Scholar
Kalló, D. (2001) Applications of natural zeolites in water and wastewater treatment. Pp. 519–550 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Klotz, S., Chervin, J.-C., Munsch, P. and Le Marchand, G. (2009) Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42, 075413.CrossRefGoogle Scholar
Komarneni, S. (1985) Philipsite in Cs decontamination and immobilization. Clays and Clay Minerals, 33, 145151.CrossRefGoogle Scholar
Knorr, K., Braunbarth, C.M., van de Goor, G., Behrens, P., Griewatsch, C. and Depmeier, W. (2000) Highpressure study on dioxolane silica sodalite (C3H6O2)2[Si12O24] – neutron and X-ray powder diffraction experiments. Solid State Communications, 113, 503507.CrossRefGoogle Scholar
Langella, A., Cappelletti, P. and de’Gennaro, R. (2001) Zeolites in closed hydrologic systems. Pp. 235–260 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Leardini, L., Quartieri, S. and Vezzalini, G. (2010) Compressibility of microporous materials with CHA topology: 1. Natural chabazite and SAPO-34. Microporous and Mesoporous Materials, 127, 219227.CrossRefGoogle Scholar
Leardini, L., Quartieri, S., Martucci, A., Vezzalini, G. and Dmitriev, V. (2012) Compressibility of microporous materials with CHA topology: 2. ALPO-34. Zeitschrift für Kristallographie, 227, 514521.CrossRefGoogle Scholar
Leardini, L., Quartieri, S. and Vezzalini, G., Martucci, A. and Dmitriev, V. (2013) Elastic behavior and high pressure-induced phase transition in chabazite: New data from a natural sample from Nova Scotia. Microporous and Mesoporous Materials, 170, 5261.CrossRefGoogle Scholar
Lee, Y., Kim, S.J. and Parise, J.B. (2000) Synthesis and crystal structures of gallium- and germaniumvariants of the fibrous zeolites with the NAT, EDI and THO structure types. Microporous and Mesoporous Materials, 34, 255271.CrossRefGoogle Scholar
Lee, Y., Hriljac, J.A., Vogt, T., Parise, J.B., Edmondson, M., Anderson, P., Corbin, D. and Nagai, T. (2001) Phase transition of zeolite Rho at high-pressure. Journal of the American Chemical Society, 123, 84188419.CrossRefGoogle ScholarPubMed
Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B. and Artioli, G. (2002a) Pressure-induced volume expansion of zeolites in the natrolite family. Journal of the American Chemical Society, 124, 54665475.CrossRefGoogle Scholar
Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B., Hanson, J.C. and Kimk, S.J. (2002b) Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature, 420, 485489.CrossRefGoogle Scholar
Lee, Y., Hriljac, J.A., Studer, A. and Vogt, T. (2004a) Anisotropic compression of edingtonite and thomsonite to 6 GPa at room temperature. Physics and Chemistry of Minerals, 31, 2227.CrossRefGoogle Scholar
Lee, Y., Hriljac, J.A. and Vogt, T. (2004b) Pressureinduced migration of zeolitic water in laumontite. Physics and Chemistry of Minerals, 31, 421428.CrossRefGoogle Scholar
Lee, Y., Martin, D., Hriljac, J.A. and Vogt, T. (2004c) Formation and manipulation of confined water wires. Nanoletters, 4, 619621.CrossRefGoogle Scholar
Lee, Y., Hriljac, J.A., Parise, J.B. and Vogt, T. (2005) Pressure-induced stabilization of ordered paranatrolite: a solution to the paranatrolite controversy. American Mineralogist, 90, 252257.CrossRefGoogle Scholar
Lee, Y., Kim, S.J., Kao, C.C. and Vogt, T. (2008) Pressure-induced hydration and order-disorder transition in a synthetic potassium gallosilicate zeolite with gismondine topology. Journal of the American Chemical Society, 130, 28422850.CrossRefGoogle Scholar
Lee, Y., Hriljac, J.A. and Vogt, T. (2010) Pressureinduced argon insertion into an auxetic small pore zeolite. Journal of Physical Chemistry C, 114, 69226927.CrossRefGoogle Scholar
Lee, Y., Liu, D., Seoung, D., Liu, Z., Kao, C.C. and Vogt, T. (2011) Pressure- and heat-induced insertion of CO2 into an auxetic small-pore zeolite. Journal of American Chemical Society, 133, 16741677.CrossRefGoogle ScholarPubMed
Lee, Y., Seoung, D., Im, J.H., Hwang, H.J., Kim, T.H., Liu, D., Liu, Z., Lee, S.Y., Kao, C.C. and Vogt, T. (2012) Immobilization of large, aliovalent cations in the small-pore zeolite K-natrolite by means of pressure. Angewandte Chemie International Edition, 51, 48484851.CrossRefGoogle Scholar
Likhacheva, A.Y., Seryotkin, Y.V., Manakov, A.Y., Goryainov, S.V., Ancharov, A.I. and Sheromov, M.A. (2006) Anomalous compression of scolecite and thomsonite in aqueous medium to 2 GPa. High Pressure Research, 26, 449453.CrossRefGoogle Scholar
Likhacheva, A.Y., Seryotkin, Y.V., Manakov, A.Y., Goryainov, S.V., Ancharov, A.I. and Sheromov, M.A. (2007) Pressure-induced over-hydration of thomsonite: a synchrotron powder diffraction study. American Mineralogist, 92, 16101615.CrossRefGoogle Scholar
Likhacheva, A.Y., Malyshev, M.E., Manakov, A.Y., Goryainov, S.V. and Ancharov, A.I. (2009) Nonhydrostatic compression of zeolite NaA in water medium: connection to anomalous conductivity. Zeitschrift für Kristallographie, 224, 137143.CrossRefGoogle Scholar
Lotti, P., Gatta, G.D., Rotiroti, N. and Cámara, F. (2012) High-pressure study of a natural cancrinite. American Mineralogist, 97, 872882.CrossRefGoogle Scholar
Lotti, P., Gatta, G.D., Rotiroti, N., Cámara, F. and Harlow, G.E. (2014) The high-pressure behavior of balliranoite: a cancrinite-group mineral. Zeitschrift für Kristallographie – Crystalline Materials 229, 6376. http://dx.doi.org/10.1515/zkri-2014-1626. CrossRefGoogle Scholar
Mao, H.K., Xu, J. and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. Journal of Geophysical Research, 91, 46734676.CrossRefGoogle Scholar
Maxwell, I.E. and Stork, W.H.J. (2001) Hydrocarbon processing with zeolites. Studies in Surface Science and Catalysis, 137, 747819.CrossRefGoogle Scholar
Mazzi, F. and Galli, E. (1978) Is each analcime different? American Mineralogist, 63, 448460.Google Scholar
Merrill, L. and Bassett, W.A. (1974) Miniature diamond anvil pressure cell for single-crystal X-ray diffraction studies. Review of Scientific Instruments, 45, 290294.CrossRefGoogle Scholar
Miletich, R., Allan, D.R. and Kuhs, W.F. (2000) Highpressure single-crystal techniques. Pp. 445–519 in: High-Temperature and High-Pressure Crystal Chemistry (R.M. Hazen, R.T. Downs, editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Ming, D.W. and Allen, E.R. (2001) Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. Pp. 619–654 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Mumpton, F.A. (1999) La roca magica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences USA, 96, 34633470.CrossRefGoogle Scholar
Ori, S., Quartieri, S., Vezzalini, G. and Dmitriev, V. (2008a) Pressure-induced over-hydration and water ordering in gismondine: A synchrotron powder diffraction study. American Mineralogist, 93, 13931403.CrossRefGoogle Scholar
Ori, S., Quartieri, S., Vezzalini, G. and Dmitriev, V. (2008b) Pressure-induced structural deformation and elastic behavior of wairakite. American Mineralogist, 93, 5362.CrossRefGoogle Scholar
Pabalan, R.T. and Bertetti, F.P. (2001) Cation-exchange properties of natural zeolites. Pp. 453–518 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Quartieri, S., Montagna, G., Arletti, R. and Vezzalini, G. (2011) Elastic behavior of MFI-type zeolites: Compressibility of H-ZSM-5 in pentrating and nonpenetrating media. Journal of Solid State Chemistry, 184, 15051516.CrossRefGoogle Scholar
Quartieri, S., Arletti, R., Vezzalini, G., Di Renzo, F., and Dmitriev, V. (2012) Elastic behavior of MFI-type zeolites: 3 – Compressibility of silicalite and mutinaite. Journal of Solid State Chemistry, 191, 201212.CrossRefGoogle Scholar
Ross, N.L. (2000) Framework structures. Pp. 257–287 in: High-Temperature and High-Pressure Crystal Chemistry (R.M. Hazen, R.T. Downs, editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Rutter, M.D., Secco, R.A. and Huang, Y. (2000) Ionic conduction in hydrated zeolite Li-, Na- and K-A at high pressures. Chemical Physics Letter, 331, 189195.CrossRefGoogle Scholar
Rutter, M.D., Uchida, T., Secco, R.A., Huang, Y. and Wang, Y. (2001) Investigation of pressure-induced amorphization in hydrated zeolite Li-A and Na-A using synchrotron X-ray diffraction. Journal of Physics and Chemistry of Solids, 62, 599606.CrossRefGoogle Scholar
Sanchez-Valle, C., Sinogeikin, S.V., Lethbridge, Z.A.D., Evans, K.E. and Bass, J.D. (2005) Brillouin scattering study on the single-crystal elastic properties of natrolite and analcime zeolites. Journal of Applied Physics, 98, 053508 (1–6).CrossRefGoogle Scholar
Sanchez-Valle, C., Chi-Hong, C. and Gatta, G.D. (2010) Single-crystal elastic properties of (Cs,Na)AlSi2O6·H2O pollucite: with potential use for long-term storage of Cs radioisotopes. Journal of Applied Physics, 108, 093509 (17).CrossRefGoogle Scholar
Sartbaeva, A., Wells, S.A., Treacy, M.M.J. and Thorpe, M.F. (2006) The flexibility window in zeolites. Nature Materials, 5, 962965.CrossRefGoogle ScholarPubMed
Sartbaeva, A., Gatta, G.D. and Wells, S.A. (2008) Flexibility window controls pressure-induced phase transition in analcime. Europhysics Letters, 83, 26002.CrossRefGoogle Scholar
Secco, R.A. and Huang, Y. (1999) Pressure-induced disorder in hydrated Na-A zeolite. Journal of Physics and Chemistry of Solids, 60, 9991002.CrossRefGoogle Scholar
Seryotkin, Y.V., Bakakin, V.V., Fursenko, B.A., Belitsky, I.A., Joswig, W. and Radaelli, P.G. (2005) Structural evolution of natrolite during overhydration: a high-pressure neutron diffraction study. European Journal of Mineralogy, 17, 305313.CrossRefGoogle Scholar
Sheppard, R.A. and Hay, R.L. (2001) Formation of zeolites in open hydrologic systems. Pp. 261–276 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
U.S. Geological Survey (2013) Mineral Commodity Summaries 2013. US Geological Survey, Reston, Virginia, USA. 198 pp. (ISBN 978–1–4113– 3548–6).Google Scholar
Utada, M. (2001a) Zeolites in burial diagenesis and lowgrade metamorphic rocks. Pp. 277–304 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Utada, M. (2001b) Zeolites in hydrothermally altered rocks. Pp. 305–322 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Vezzalini, G., Quartieri, S., Galli, E., Alberti, A., Cruciani, G. and Kvick, Å. (1997) Crystal structure of the zeolite mutinaite, the natural analogue of ZSM-5. Zeolites, 19, 323325.CrossRefGoogle Scholar
Wells, S.A., Dove, M.T., Tucker, M.G. and Trachenko, K. (2002) Real-space rigid-unit-mode analysis of dynamic disorder in quartz, cristobalite and amorphous silica. Journal of Physics of Condensed Matter, 14, 46454657.CrossRefGoogle Scholar
Wells, S.A., Dove, M.T. and Tucker, M.G. (2004) Reverse Monte Carlo with geometric analysis- RMC+GA. Journal of Physics of Condensed Matter, 37, 536544.Google Scholar
Wells, S.A., Sartbaeva, A. and Gatta, G.D. (2011) Flexibility windows and phase transitions of ordered and disordered ANA framework zeolites. Europhysics Letters, 94, 56001.CrossRefGoogle Scholar
Werner, S., Barth, S., Jordan, R. and Schulz, H. (1996) Single crystal study of sodalite at high pressure. Zeitschrift für Kristallographie, 211, 158162.Google Scholar
Zanazzi, P.F. and Pavese, A. (2002) Behavior of micas at high pressure and high temperature. Pp 99–116 in Micas: Crystal Chemistry and Metamorphic Petrology (A. Mottana, F.P. Sassi, J.B. Thompson Jr. and S. Guggenheim, editors). Reviews in Mineralogy & Geochemistry, 46. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Zhang, L., Ahsbahs, H. and Kutoglu, A. (1998) Hydrostatic compression and crystal structure of pyrope to 33 GPa. Physics and Chemistry of Minerals, 25, 301307.CrossRefGoogle Scholar