Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T19:06:25.846Z Has data issue: false hasContentIssue false

Akopovaite, Li2Al4(OH)12(CO3)(H2O)3, a new Li member of the hydrotalcite supergroup from Turkestan Range, Kyrgyzstan

Published online by Cambridge University Press:  13 February 2020

Vladimir Yu. Karpenko
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskiy prospect, 18-2, 119071, Moscow, Russia
Elena S. Zhitova*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb., 7/9, St. Petersburg, 119034, Russia Institute of Volcanology and Seismology, Russian Academy of Sciences, Piip blvd., 9, Petropavlovsk-Kamchatsky, 683006, Russia
Leonid A. Pautov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskiy prospect, 18-2, 119071, Moscow, Russia Institute of Mineralogy, Miass, Chelyabinskaya obl., 456301, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskiy prospect, 18-2, 119071, Moscow, Russia
Oleg I. Siidra
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb., 7/9, St. Petersburg, 119034, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200 Russia, 683006, Russia
Maria G. Krzhizhanovskaya
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb., 7/9, St. Petersburg, 119034, Russia
Victor A. Rassulov
Affiliation:
Fedorovskii Institute of Mineral Raw Materials, Staromonetny per., 31, Moscow, 119017, Russia
Vladimir N. Bocharov
Affiliation:
Geomodel Resource Center, St. Petersburg State University, University Emb., 7/9, St. Petersburg, 199034, Russia
*
*Author for correspondence: Elena S. Zhitova, Email: zhitova_es@mail.ru

Abstract

Akopovaite, ideally Li2Al4(OH)12(CO3)(H2O)3, is a new hydrotalcite-supergroup mineral from the Karasu–Karavshinskoye Sn deposit, Turkestan Range, Kyrgyzstan. It occurs as white or pale yellowish rosette-like aggregates that are composed of tiny curved plates up to 20–30 μm. Akopovaite is associated with gibbsite, quartz, albite, microcline, muscovite, montebrasite, siderite, schorl and birnessite-like Fe–Mn oxides. Akopovaite has a perfect cleavage along {001}, the mineral is transparent and very soft (VHN = 24 that corresponds to Mohs hardness of ca. 1). Dmeas = 2.12(2) g/cm3 and Dcalc = 2.106 g/cm3. The Raman spectra contain bands of carbonate groups and bands of O–H stretching vibrations. The chemical composition (wt.%, electron microprobe for Al and Fe; ICP-OES for Li; CHN method for CO2 and H2O) is Li2O 6.43, Al2O3 45.79, Fe2O3 0.27, CO2 10.09, H2O 36.1, total 98.68. The empirical formula based on (Li + Al + Fe) = 6 apfu is Li1.94(Al4.05Fe0.02)Σ4.07(OH)12(CO3)1.03(H2O)3.03. The crystal structure was refined by the Rietveld method with RB = 0.006 and Rwp = 0.014. Akopovaite is monoclinic, C2/m, a = 5.0953(6), b = 8.877(1), c = 7.806(1) Å, β = 102.572(6)°, V = 344.61(8) Å3 and Z = 1. The polytype should be denoted as 1M. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.66(100)(001), 4.397(27)(020), 3.821(45)(002,021), 2.4881(27)(200), 2.2273(16)(201) and 1.9027(18)(202). Akopovaite is the first naturally occurring hydrotalcite-supergroup carbonate species of Al and Li; its synthetic analogue is known.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

References

Allmann, R. (1968) The crystal structure of pyroaurite. Acta Crystallographica, B24, 972977.CrossRefGoogle Scholar
Arapov, Yu.A. (1935) On the geology and petrography of tin-bearing pegmatites of the Lyailyak river uppers. Pp. 361 in: On geology and petrography of the Turkestan Ridge. Tadjiksko-Pamirskaya Expeditsia 1934. Trudy expeditsii, 51 [in Russian].Google Scholar
Balan, E., Lazzeri, M., Morin, G. and Mauri, F. (2006) First-principles study of the OH-stretching modes of gibbsite. American Mineralogist, 91, 115119.CrossRefGoogle Scholar
Beus, A.A. (1951) New phosphates from the Turkestan Ridge pegmatites. Trudy mineralogicheskogo muzeya, 3, 1936 [in Russian].Google Scholar
Britto, S. and Kamath, P.V. (2009) Structure of bayerite-based lithium-aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry. Inorganic chemistry, 48, 1164611654.CrossRefGoogle ScholarPubMed
Britto, S. and Kamath, P.V. (2011) Polytypism in the lithium–aluminum layered double hydroxides: the [LiAl2(OH)6]+ layer as a structural synthon. Inorganic Chemistry, 50, 56195627.CrossRefGoogle Scholar
Britto, S., Thomas, G.S., Kamath, P.V. and Kannan, S. (2008) Polymorphism and structural disorder in the carbonate containing layered double hydroxide of Li with Al. Journal of Physical Chemistry, 112, 95109515.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 146, 104107 [in Russian with English abs.].Google Scholar
Bruker AXS (2009) Topas V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany.Google Scholar
Devyatkina, E.T., Kotsupalo, N.P., Tomilov, N.P. and Berger, A.S. (1983) On the lithium carbonate-hydroxyl-aluminate. Zhurnal neorganicheskoi khimii, 28, 14201425 [in Russian].Google Scholar
Drewien, C.A., Eatough, M.O., Tallant, D.R., Hills, C.R. and Buchheit, R.G. (1996) Lithium-aluminum-carbonate-hydroxide hydrate coatings on aluminum alloys: composition, structure, and processing bath chemistry. Journal of Materials Research, 11, 15071513.CrossRefGoogle Scholar
Evans, D.G. and Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Layered Double Hydroxides (Duan X. and Evans D.G., editors). Springer, Berlin. 119, 187.Google Scholar
Gavrusevitch, V.A. (1932) Materials to the mineralogy of the granite pegmatites of the Lyailyak river uppers. Pp. 133–143 in: Pamir Expedition of 1930. Petrography and Mineralogy. Proceedings of the Expedition, Vol. IV(14) [in Russian].Google Scholar
Ginzburg, A.I. (1952) On the phosphates from granite pegmatites. Trudy mineralogicheskogo muzeya, 4, 3663, [in Russian].Google Scholar
Ingram, L. and Taylor, H.F.W. (1967) The crystal structures of sjoegrenite and pyroaurite. Mineralogical Magazine, 36, 465479.CrossRefGoogle Scholar
Ionin, N.V. (1934) Northern slopes of the Turkestano-Alaiskiy Ridge. Pp. 6899 in: Tadjik–Pamir Expedition 1933. ONTI – Goskhimtechizdat, Leningrad, [in Russian].Google Scholar
Isupov, V.P. (1999) Intercalation compounds of aluminium hydroxide. Journal of Structural Chemistry, 40, 672685.Google Scholar
Isupov, V.P., Chupakina, L.E., Tarasov, K.A. and Shestakova, N.Yu. (2007) Synthesis of superfine carbonate form of Li–Al double hydroxide from sodium hydroaluminocarbonate. Chemistry for Sustainable Development, 15, 6369.Google Scholar
Karpenko, V.Y., Pautov, L.A., Zhitova, E.S., Agakhanov, A.A., Krzhizhanovskaya, M.G., Siidra, O.I. and Rassulov, V.A. (2018) Akopovaite, IMA 2018-095. CNMNC Newsletter No. 46, December 2018, page 1375; Mineralogical Magazine, 82, 13691379.Google Scholar
Kogan, S.I., Beus, A.A., Deberin, A.E., Paltova, N.M. and Eventov, V.S. (1950) A geological report of the Lyakan complex prospecting party on the survey of rare-metal deposits of the Turkestan Ridge – Kara-Su-Karavshinskoye, Kyrk-Bulak, Samzhen with reserve evaluation of ore, lithium oxide and beryllium oxide. 1950. Glavwolframredmet, Moscow [in Russian].Google Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y. (2010a) Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H-3c from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 74, 821832.CrossRefGoogle Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Yu. (2010b) Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M: First evidence of a monoclinic polytype in M2+-M3+ layered double hydroxides. Mineralogical Magazine, 74, 833840.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2004) LMPG Suite of Programs for the Interpretation of X-ray Experiments. ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. URL: http://www.ccp14.ac.uk/tutorial/lmgp/Google Scholar
Lozano, R.P., Rossi, C., La Iglesia, A. and Matesanz, E. (2012) Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain). American Mineralogist, 97, 513523.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J.-M. R., Kameda, T. and Colombo, F. (2012a) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.10.1180/minmag.2012.076.5.10CrossRefGoogle Scholar
Mills, S.J., Whitfield, P.S., Kampf, A.R., Wilson, S.A., Dipple, G.M., Raudsepp, M. and Favreau, G. (2012b) Contribution to the crystallography of hydrotalcites: the crystal structures of woodallite and takovite. Journal of Geosciences, 58, 273279.Google Scholar
Mills, S.J., Christy, A.G. and Schmitt, R.T. (2016) The creation of neotypes for hydrotalcite. Mineralogical Magazine, 80, 10231029.CrossRefGoogle Scholar
Rassulov, V.A. (2005) Local laser luminescent spectroscopy of minerals considering decay kinetics of minerals (zircon as an example). Pp 116 in Methodical Recommendations, vol. 156. VIMS, Moscow [in Russian].Google Scholar
Serna, C.J., White, J.L. and Hem, S.L. (1977) Hydrolysis of aluminium-tri-(sec-butoxide) in ionic and nonionic media. Clays and Clay Minerals, 25, 384391.CrossRefGoogle Scholar
Serna, C.J., Rendon, J.L. and Iglesias, J.E. (1982) Crystal-chemical study of layered [Al2Li(OH)6]+⋅nH2O. Clays and Clay Minerals, 30, 180184.Google Scholar
Sissoko, I., Iyagba, E.T., Sahai, I. and Biloen, P. (1985) Anion intercalation and exchange in Al(OH)3-derived compounds. Journal of Solid State Chemistry, 60, 283288.CrossRefGoogle Scholar
Tarashchan, A.N. (1978) A Mineral Luminescence. Naukova dumka, Kiev, 296 pp [in Russian].Google Scholar
Theiss, F., López, A., Frost, R.L. and Scholz, R. (2015) Spectroscopic characterisation of the LDH mineral quintinite Mg4Al2(OH)12CO3×3H2O. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150, 758764.CrossRefGoogle Scholar
Thiel, J.P., Chiang, C.K. and Poeppelmeier, K.R. (1993) Structure of LiAl2(OH)7⋅H2O. Chemistry of Materials, 5, 297304.CrossRefGoogle Scholar
Weber, V.N. (1913) Mineral Resources of Turkestan. Geological committee publishing house, Petrograd, 209 pp. [in Russian].Google Scholar
Zhitova, E.S., Yakovenchuk, V.N., Krivovichev, S.V., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y. (2010) Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg, Al-disordered quintinite-2H. Mineralogical Magazine, 74, 841848.CrossRefGoogle Scholar
Zhitova, E.S., Popov, M.P., Krivovichev, S.V., Zaitsev, A.N. and Vlasenko, N.S. (2017a) Quintinite-1M from the Mariinskoe deposit, Ural Emerald Mines, Southern Urals, Russia. Geology of Ore Deposits, 59, 745751.CrossRefGoogle Scholar
Zhitova, E.S., Ivanyuk, G.Yu., Krivovichev, S.V., Yakovenchuk, V.N., Pakhomovsky, Ya.A. and Mikhailova, Yu.A. (2017b) Crystal chemistry of pyroaurite from the Kovdor pluton, Kola peninsula, Russia, and the Långban Fe–Mn deposit, Värmland, Sweden. Geology of Ore Deposits, 59, 652661.CrossRefGoogle Scholar
Zhitova, E.S., Krivovichev, S.V., Yakovenchuk, V.N., Ivanyuk, G.Yu., Pakhomovsky, Ya.A. and Mikhailova, J.A. (2018) Crystal chemistry of natural layered double hydroxides. 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 82, 329346, https://doi.org/10.1180/minmag.2017.081.046.Google Scholar
Zhitova, E.S., Pekov, I.V., Chaikovskiy, I.I., Chirkova, E.P., Yapaskurt, V.O., Bychkova, Ya. V., Belakovskiy, D.I., Chukanov, N.V., Zubkova, N.V., Krivovichev, S.V. and Bocharov, V.N. (2019a) Dritsite, Li2Al4(OH)12Cl2⋅3H2O, a new gibbsite-based hydrotalcite supergroup mineral. Minerals, 9, 492, https://doi.org/10.3390/min9080492.CrossRefGoogle Scholar
Zhitova, E.S., Krivovichev, S.V., Pekov, I.V., Greenwell, H.C. (2019b) Crystal chemistry of natural layered double hydroxides. 5. Single-crystal structure refinement of hydrotalcite, [Mg6Al2(OH)16](CO3)(H2O)4. Mineralogical Magazine, 83, 269280, https://doi.org/10.1180/mgm.2018.145.CrossRefGoogle Scholar
Zhitova, E.S., Krivovichev, S.V., Pekov, I.V., Yapaskurt, V.O. (2019c) Crystal chemistry of chlormagaluminite, Mg4Al2(OH)12Cl2(H2O)2, a natural layered double hydroxide. Minerals, 9, 221.CrossRefGoogle Scholar
Supplementary material: File

Karpenko et al. supplementary material

Karpenko et al. supplementary material

Download Karpenko et al. supplementary material(File)
File 1.2 KB