Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T09:04:56.889Z Has data issue: false hasContentIssue false

Alkali feldspars: ordering rates, phase transformations and behaviour diagrams for igneous rocks*

Published online by Cambridge University Press:  05 July 2018

William L. Brown
Affiliation:
Centre de Recherches Pétrographiques et Géochimiques, BP 20, 54501 Vandoeuvre-lès-Nancy Cedex, France
Ian Parsons
Affiliation:
Department of Geology and Mineralogy, Marischal College, University of Aberdeen, Aberdeen AB9 1AS, Scotland

Abstract

Homogeneous and heterogeneous phase relationships in the alkali feldspars are reviewed, and behaviour diagrams developed. Al,Si ordering is almost certainly continuous and higher order in both albite and potassium feldspar and has been established reversibly or nearly so down to below 500°C in albite and possibly to ∼ 200°C in potassium feldspar. The degree of order in intermediate albite changes strongly over a range of ∼ 75–150°C depending on pressure, low albite being stable up to about 620–650°C and high albite above about 725°C at low pressure. Symmetry is broken at ∼ 980°C mainly by a cooperative shearing of the whole framework and not by Al,Si ordering alone; there is a thermal crossover near 700°C shearing being dominant above (high albite) and ordering dominant below (intermediate albite).

In potassium feldspar symmetry is broken by Al,Si ordering at a temperature of about 500°C The change in degree of order with respect to temperature has been followed easily and reversibly in sanidine from ∼ 1075 to ∼ 550°C and to a lesser extent in microcline from 450 to 200°C. Ordering rates in sanidine down to 500°C and ordering rates in microcline between 450 and 200°C are almost as fast as in albite. Ordering in sanidine at 500°C and below slows and then stops with the development of the tweed orthoclase domain texture. The tweed texture acts as a barrier to further order because the strain energy associated with the (incipient) twin domain texture balances or nearly balances the free energy decrease resulting from ordering. Ordering stops not because of the kinetics of Al,Si diffusion, but because the total driving force is very small or nil. Ordering can readily proceed to completion, with the formation of low microcline, only if the domain-texture barrier is overcome by processes involving fluids or strong external stresses. There is no barrier in albite.

The symmetry-breaking process in alkali feldspar changes with composition from mainly shearing in albite to ordering in potassium feldspar. Symmetry is broken equally at a compositional crossover (metastable with respect to exsolution) near Ab80-75 at low pressure and progressively displaced towards Or at higher pressures. Ordering in pure albite occurs by a (nearly) one-step path which progressively becomes two-step with substitution of Or. Diagrams showing the near-equilibrium variation of the order parameters at low pressure with composition and T are given, as well as two extreme phase and behaviour diagrams for complete coherent and complete incoherent (strain-free) relationships. These diagrams can be used to understand feldspar relationships and microtextures in hypersolvus and subsolvus rocks, the occurrence of orthoclase, and of intermediate and low microcline.

Type
Review Papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW.

*

CRPG contribution 739.

References

Adams, L. H. (1952) Annual report of the Director of the Geophysical Laboratory, Carnegie Institution of Washington, 49-51.Google Scholar
Angel, R, Hazen, R. M., McCormick, T. C., Prewitt, C. T., and Smyth, J. R. (1988) Phys. Chem. Minerals, 15, 313-18.CrossRefGoogle Scholar
Bachinski, S. W., and Mfiller, G. (1971) J. Petrol. 12, 329-56.CrossRefGoogle Scholar
Bambauer, H-U., and Bernotat, W. H. (1982) Schweiz. Mineral. Petrogr. Mitt. 62, 185-230.Google Scholar
Bambauer, H-U., and Bernotat, W. H., Kroll, H., Nager, H. E., and Pentinghaus, H. (1974) Bull. Soc. fr. Minkral. Cristallogr. 97, 313-45.Google Scholar
Beran, A. (1986) Phys. Chem. Minerals, 13, 306-10.CrossRefGoogle Scholar
Bernotat, W. H., and Bambauer, H-U. (1982) Schweiz. Mineral. Petrogr. Mitt. 62, 231-44.Google Scholar
Bertelmann, D., Frrtsch, E., and Wondratschek, H. (1985) Neues Jahrb. Mineral. Abh. 152, 123-41.Google Scholar
Bertelmann, D., Frrtsch, E., and Wondratschek, H., Walther, J., and Wondratschek, H. (1987) Terra Cognita, 7, 257-58.Google Scholar
Blasi, A., Brajkovic, A., and De Pol Blasi, C. (1984) Bull. MinOral. 107, 423-35.CrossRefGoogle Scholar
Bowen, N. L., and Tuttle, O. F. (1950) J. Geol. 58, 489-511.CrossRefGoogle Scholar
Brown, W. L., and Parsons, I. (1984a) Contrib. Mineral. Petrol. 86, 3-18.CrossRefGoogle Scholar
Brown, W. L., and Parsons, I. (1984b) Ibid. 86, 335-41.Google Scholar
Brown, W. L., and Parsons, I., Becker, S. M., and Parsons, I. (1983) Ibid. 82, 13-25.Google Scholar
Brown, W. L., and Parsons, I., Becker, S. M., and Parsons, I., Openshaw, R. E., McMillan, P. F., and Henderson, C. M. B. (1984) Am. Mineral. 69, 1058-71.Google Scholar
Carpenter, M. A. (1988) In Physical properties and thermodynamic behaviour of minerals (Salje, E., ed.). Reidel, Dordrecht.Google Scholar
Eberhard, E. (1967) Schweiz. Mineral. Petrogr. Mitt. 47, 385-98.Google Scholar
Eggleton, R. A., and Buseck, P. R. (1980) Contrib. Mineral. Petrol. 74, 123-33.CrossRefGoogle Scholar
Euler, R., and Hellner, E. (1961) Z. Kristallogr. 115, 433-8.CrossRefGoogle Scholar
Fitz Gerald, J. D., and McLaren, A. C. (1982) Contrib. Mineral. Petrol. 80, 219-29.CrossRefGoogle Scholar
Flehmig, W. (1977) Ibid. 65, 1-19.Google Scholar
Franck, E. U. (1981) In Chemistry and geochemistry of solutions at high temperatures and pressures (Rickard, D. T., and Wickman, F. E., eds.). Pergamon, Oxford, 65-82.Google Scholar
Gering, E. (1985) Silizium/Aluminium-Ordnung und Kristallperfektion yon Sanidinen. Unpubl. Doctoral thesis, University of Karlsruhe.Google Scholar
Goldsmith, J. R. (1987) Contrib. Mineral. Petrol. 95, 311-21.CrossRefGoogle Scholar
Goldsmith, J. R. (1988) J. Geol. 96, 109-24.CrossRefGoogle Scholar
Goldsmith, J. R. and Jenkins, D. M. (1985) Am. Mineral. 70, 911-23.Google Scholar
Goldsmith, J. R. and Jenkins, D. M. and Laves, F. (1954) Geochim. Cosmochim. Acta, 5, 1-19.CrossRefGoogle Scholar
Goldsmith, J. R. and Jenkins, D. M. and Laves, F. and Newton, R. C. (1974) In The feldspars (MacKenzie, W. S., and Zussman, J., eds.). Manchester Univ. Press. 337-59.Google Scholar
Grundy, H. D., and Brown, W. L. (1969) Mineral. Mag. 37, 156-72.CrossRefGoogle Scholar
Grundy, H. D., and Brown, W. L. and MacKenzie, W. S. (1967) Ibid. 36, 83-8.Google Scholar
Guidotti, C. V., Herd, H. H., and Tuttle, C. L. (1973) Am. Mineral. 58, 705-16.Google Scholar
Hazen, R. M. (1976) Science 194, 105-7.CrossRefGoogle Scholar
Henderson, C. M. B., and Gibb, F. G. F. (1983) Contrib. Mineral. Petrol. 84, 355-64.CrossRefGoogle Scholar
Kastner, M., and Siever, R. (1979) Am. J. Sci. 279, 435-79.CrossRefGoogle Scholar
Krause, C., Kroll, H., Breit, U., Schmiemann, I., and Bambauer, H-U. (1986) Z. Kristallogr. 174, 123-4.Google Scholar
Kroll, H., and Knitter, R. (1985) Fortschr. Mineral. 63, 127-8.Google Scholar
Kroll, H., and Knitter, R. and Ribbe, P. H. (1983) Rev. Mineral. 2. Mineral. Soc. Am., 57-99.Google Scholar
Kroll, H., and Knitter, R. and Ribbe, P. H., Bambauer, H-U., and Schirmer, U. (1980) Am. Mineral. 65, 1192-211.Google Scholar
Laves, F. (1950) J. Geol. 58, 548-71.CrossRefGoogle Scholar
Laves, F. (1952) Ibid. 60, 436-50 and 549 74.Google Scholar
Laves, F. (1960) Z. Kristallogr. 113, 265-96.CrossRefGoogle Scholar
Luth, W. C., Martin, R. F., and Fenn, P. M. (1974) In The feldspars (MacKenzie, W. S., and Zussman, J., eds.). Manchester Univ. Press, 279-312.Google Scholar
MacKenzie, W. S. (1957) Am. J. Sci. 255, 481-516.CrossRefGoogle Scholar
MacKenzie, W. S. and Smith, J. V. (1961) Inst. ‘Lucas Mallada’ Cursillos y Conferencias VIII, 53-69.Google Scholar
Mallard, F. (1876) Ann. Mines 10, 60-196.Google Scholar
Martin, R. F. (1974a) Bull. Soc.fr. Minbral. Cristallogr. 97, 346-55.Google Scholar
Martin, R. F. (1974b) In The feldspars (MacKenzie, W. S., and Zussman, J., eds.). Manchester Univ. Press, 313-36.Google Scholar
Mason, R. A. (1979) Contrib. Mineral. Petrol. 68, 269-73.CrossRefGoogle Scholar
Mason, R. A. (1980a) Ibid. 72, 329-33.CrossRefGoogle Scholar
Mason, R. A. (1980b) Mineral. Mag. 43, 905-8.CrossRefGoogle Scholar
McConnell, J. D. C. (1965) Phil. Mag. 11, 1289-301.CrossRefGoogle Scholar
McConnell, J. D. C. (1971) Mineral. Mag. 38, 1-20.CrossRefGoogle Scholar
McDowell, S. D. (1986) Ibid. 50, 75-84.Google Scholar
McKie, D., and McConnell, J. D. C. (1963) Ibid. 33, 581-8.Google Scholar
McLaren, A. C. (1978) Chemistry and physics of solids and their interfaces. Chemical Soc. London Spec. Rep. 7, 1-30.CrossRefGoogle Scholar
McLaren, A. C. (1984) In Feldspars and feldspathoids (Brown, W. L., ed.). Reidel, Dordrecht, 373-409.CrossRefGoogle Scholar
McLaren, A. C. and Fitz Gerald, J. D. (1987) Phys. Chem. Minerals 14, 281-292.CrossRefGoogle Scholar
McLaren, A. C. and Fitz Gerald, J. D. Cook, R. F., Hyde, S. T., and Tobin, R. C. (1983) 9, 79-94.CrossRefGoogle Scholar
Mergoil-Daniel, J., and Chevalier, R. (1984) Bull. Minéral. 107, 401-10.CrossRefGoogle Scholar
Merkel, G. A., and Blencoe, J. G. (1982) In Adv. Phys. Geochem. (Saxena, S. K., ed.), 234-84.Google Scholar
Moreau, C., Brown, W. L., and Karche, J. P. (1987) Contrib. Mineral. Petrol. 95, 32-43.CrossRefGoogle Scholar
Müller, G. (1971) Ibid. 34, 73-9.Google Scholar
Naney, M. T., and Swanson, S. E. (1980) Am. Mineral. 65, 639-53.Google Scholar
Nissen, H-U. (1967) Contrib. Mineral. Petrol. 16, 354-60.CrossRefGoogle Scholar
Parsons, I. (1968) Mineral. Mag. 36, 1061-77.Google Scholar
Parsons, I. (1978a) Ibid. 42, l 17.Google Scholar
Parsons, I. (1978b) Phys. Chem. Minerals, 2, 199-213.CrossRefGoogle Scholar
Parsons, I. and Brown, W. L. (1984) In Feldspars and feldspathoids (Brown, W. L., ed.). Reidel, Dordrecht, 317-71.CrossRefGoogle Scholar
Priess, U. (1981) Neues Jahrb. Mineral. Abh. 141, 17-29.Google Scholar
Raase, P. (1971) Tschermaks Mineral. Petrogr. Mitt. 16, 136-55.CrossRefGoogle Scholar
Ribbe, P. H. (1983) Rev. Mineral. 2. Mineral. Soc. Am., 21-55.Google Scholar
Salje, E. (1985) Phys. Chem. Minerals” 12, 93-8.CrossRefGoogle Scholar
Salje, E.(1986) Ibid. 13, 340-6.Google Scholar
Salje, E. and Kuscholke, B. (1984) Bull. Mineral. 107, 539.Google Scholar
Kuscholke, B., Wruck, B., and Kroll, H. (1985) Phys. Chem. Minerals 12, 99-107.Google Scholar
Schneider, T. R. (1957) Z. Kristallogr. 109, 245-71.CrossRefGoogle Scholar
Scott, R. B., Bachinski, S. W., Nesbitt, R. W., and Scott, M. R. (1971) Am. Mineral. 56, 1208-21.Google Scholar
Senderov, E. E. (1980) Phys. Chem. Minerals 6, 251-68.CrossRefGoogle Scholar
Senderov, E. E. and Shchekina, T. I. (1976) Geochem. Intern. 13/1, 99-112.Google Scholar
Senderov, E. E. and Shchekina, T. I. and Yas'kin, G. M. (1975) Ibid. 12/3, 139-45.Google Scholar
Senderov, E. E. and Shchekina, T. I. and Yas'kin, G. M. (1976) Geokhim. 7, 1038-54. [In Russian]Google Scholar
Senderov, E. E. and Shchekina, T. I. and Yas'kin, G. M. and Bychkov, A. M. (1975) Geochem. Intern. 12/6, 116-25.Google Scholar
Senderov, E. E. and Shchekina, T. I. and Yas'kin, G. M. and Bychkov, A. M., Bychkov, A. M., Lebedev, Y. B., and Dorfman, M. (1981) Geochem. Intern. 18/1, 122-34.Google Scholar
Sipling, P. J., and Yund, R. A. (1976) Am. Mineral. 61, 897-906.Google Scholar
Sipling, P. J., and Yund, R. A. (1974) Feldspar Minerals, 2 vol. Springer, Heidelberg.Google Scholar
Sipling, P. J., and Yund, R. A. (1983) Rev. Mineral. 2. Mineral. Soc. Am., 223-39.Google Scholar
Sipling, P. J., and Yund, R. A. and Brown, W. L. (1988) Feldspar Minerals Vol. 1 (2nd ed.). Berlin, Springer Verlag.Google Scholar
Smith, P., and Parsons, I. (1974) Mineral. Mag. 39, 747-67.CrossRefGoogle Scholar
Stewart, D. B., and Wright, T. L. (1974) Bull. Soc. fr. Minéral. Cristallogr. 97, 356-77.CrossRefGoogle Scholar
Taftø, J., and Buseck, P. R. (1983) Am. Mineral. 68, 944-50.Google Scholar
Thompson, J. B. Jr. (1969) Ibid. 54, 341-375; also 55, 528-32.Google Scholar
Thompson, J. B. Jr. and Hovis, G. L. (1979) Trans. Am. Crystallogr. Ass. 15, 1-26.Google Scholar
Tomisaka, T. (1962) Mineral. J. 3, 261-81.CrossRefGoogle Scholar
Tuttle, O. F. (1952) J. Geol. 60, 107-124.CrossRefGoogle Scholar
Tuttle, O. F. and Bowen, N. L. (1950) Ibid. 58, 572-83.Google Scholar
Tuttle, O. F. and Bowen, N. L. (1958) Geol. Soc. Am. Mem. 74, 1-153.Google Scholar
Winter, J. K., Okamura, F. P., and Ghose, S. (1979) Am. Mineral. 64, 409-23.Google Scholar
Wright, T. L. (1964) Ibid. 49, 715-35.Google Scholar
Wright, T. L. (1967) Ibid. 52, 117-36.Google Scholar
Yund, R. A. (1974) In Geochemical transport and kinetics (Hofmann, A. W., Giletti, B. J., Yoder, H. S. Jr., and Yund, R. A., eds.). Carnegie Inst. Wash. and Academic Press, 173-83.Google Scholar
Yund, R. A. and Tullis, J. (1983) In Feldspar mineralogy (Ribbe, P. H., ed.). Rev. Mineral. 2. Mineral. Soc. Am., 141-76.Google Scholar
Zyrianov, V. N. (1977) Dokl. Akad. Nauk. SSSR, 233, 1192-95 [in Russian].Google Scholar