Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T16:20:11.975Z Has data issue: false hasContentIssue false

Appendix 2: The estimation of ferric iron in electron microprobe analysis of amphiboles

Published online by Cambridge University Press:  05 July 2018

John C. Schumacher*
Affiliation:
Institut für Mineralogie-Petrologie-Geochemie, Universität Freiburg, Freiburg i. Br., 79104 Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deer, W.A., Howie, R.A., and Zussman, J. (1966) An Introduction to the Rock-forming Minerals. Longman Group Limited, London, 528 pp.Google Scholar
Deer, W.A., Howie, R.A., and Zussman, J. (1992) An Introduction to the Rock,forming Minerals-—2nd ed. Longman Group UK Limited, Essex, 696 pp.Google Scholar
Droop, G.T.R. (1987) A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag., 51, 431-7.CrossRefGoogle Scholar
Dyar, M.D., Mackwell, S.J., McGuire, A.V., Cross, L.R. and Robertson, J.D. (1993) Crystal chemistry of Fe3+ and H+ in mantle kaersutite: Implications for mantle metasomatism. Amer. Mineral., 78, 968—79.Google Scholar
Holland, T. and Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol., 116, 433-47.CrossRefGoogle Scholar
Leake, B.E. (1968) A catalog of analyzed calciferous and sub-calciferous amphiboles together with their nomenclature and associated minerals. Geol. Soc. Amer. Spec. Paper, 98, 210 pp.Google Scholar
Jacobson, C.E. (1989) Estimation of Fe3+ from micro-probe analyses: observations on calcic amphibole and chlorite. J. Metam. Geol., 7, 507-13.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles : I. Four- and six-coordinated Ti in richterite. Eur. J. Mineral., 4, 425-39.CrossRefGoogle Scholar
Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Survey Bull. 1452, 456 pp.Google Scholar
Robinson, P., Spear, F.S., Schumacher, J.C., Laird, J., Klein, C., Evans, B.W. and Doolan, B.L. (1982b) Phase relations of metamorphic amphiboles: natural occurrence and theory. In: Amphiboles and Other Hydrous Pyriboles — Mineralogy, (Veblen, D.R. and Ribbe, P.H., eds) Reviews in Mineralogy Vol. 9B, 1-27.Google Scholar
Schumacher, J.C. (1991) Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers. Mineral. Mag., 55, 3—18.CrossRefGoogle Scholar
Schumacher, R. (1991) Compositions and phase relations of calcic amphiboles in epidote- and clinopyroxene-bearing rocks of the amphibolite and lower granulite facies, central Massachusetts, USA. Contrib. Mineral. Petrol,, 108, 196211.CrossRefGoogle Scholar
Spear, F.S. and Kimball, C. (1984) RECAMP—-A FORTRAN IV program for estimating Fe3+ contents in amphiboles. Computers and Geoscience, 10, 317-25.CrossRefGoogle Scholar
Stout, J.H. (1972) Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway. J. Petrol., 13, 99145.CrossRefGoogle Scholar