Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:25:21.430Z Has data issue: false hasContentIssue false

Argentotetrahedrite-(Cd), Ag6(Cu4Cd2)Sb4S13, a new member of the tetrahedrite group from Rudno nad Hronom, Slovakia.

Published online by Cambridge University Press:  19 December 2022

Tomáš Mikuš*
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11 Banská Bystrica, Slovakia
Jozef Vlasáč
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11 Banská Bystrica, Slovakia
Juraj Majzlan
Affiliation:
Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, 07749 Jena, Germany
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Praha 9, Czech Republic
Gwladys Steciuk
Affiliation:
 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Jakub Plášil
Affiliation:
 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Christiane Rößler
Affiliation:
Bauhaus University, Coudraystrasse 11, 99423 Weimar, Germany
Christian Matthes
Affiliation:
Bauhaus University, Coudraystrasse 11, 99423 Weimar, Germany
*
*Author for correspondence: Tomáš Mikuš, Email: mikus@savbb.sk

Abstract

Argentotetrahedrite-(Cd), Ag6(Cu4Cd2)Sb4S13, has been approved as a new mineral species by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association using samples from Rudno nad Hronom, Slovak Republic. It occurs as anhedral grains up to 30 μm in size, steel-grey to black in colour, with a metallic lustre, in association with greenockite and other tetrahedrite-group minerals [argentotetrahedrite-(Zn) and tetrahedrite-(Zn)], earlier base-metal minerals, Ag sulfides and sulfosalts (acanthite, pyrargyrite and polybasite) and later galena. Argentotetrahedrite-(Cd) is isotropic, grey in colour, with a creamy tint and rapidly (tens of minutes) tarnishes to orange–brown. Reflectance data for Commission on Ore Mineralogy (COM) wavelengths in air are [λ (nm), R (%)]: 470, 30.4; 546, 30.3; 589, 30.3; and 650, 28.7. The chemical formula of the samples studied, recalculated on the basis of ΣMe = 16 atoms per formula unit, is: (Ag3.28Cu2.72)Ʃ6.00[Cu4(Cd1.68Fe0.27Zn0.16)]Ʃ6.11(Sb3.71As0.15)Ʃ3.86S12.79. Argentotetrahedrite-(Cd) is cubic, I$\bar{4}$3m, with a = 10.65(2) Å, V = 1208(4) Å3 and Z = 2. Argentotetrahedrite-(Cd) is isotypic with other members of the tetrahedrite group. The structural relationship between argentotetrahedrite-(Cd) and other members of the freibergite series are discussed and previous findings of this species are briefly reviewed.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Biagioni, C., George, L.G., Cook, N.J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley, C.J., Welch, M.D. and Bosi, F. (2020a) The tetrahedrite group: Nomenclature and classification. American Mineralogist, 105, 109122.CrossRefGoogle Scholar
Biagioni, C., Sejkora, J., Moëlo, Y., Makovicky, E., Pasero, M. and Dolníček, Z. (2020b) Kenoargentotennantite-(Fe), IMA 2020–062. In: CNMNC Newsletter 58. Mineralogical Magazine, 84, 971975.Google Scholar
Biagioni, C., Kasatkin, A., Sejkora, J., Nestola, F. and Škoda, R. (2022) Tennantite-(Cd), Cu6(Cu4Cd2)As4S13, from the Berenguela mining district, Bolivia: the first Cd-member of the tetrahedrite group. Mineralogical Magazine, 86, 834840.CrossRefGoogle Scholar
Dobbe, R.T.M. (1992) Manganoan-cadmian tetrahedrite from the Tunaberg Cu-Co deposit, Bergslagen, central Sweden. Mineralogical Magazine, 56, 113115.CrossRefGoogle Scholar
Gemmi, M. and Lanza, A.E. (2019) 3D electron diffraction techniques. Acta Crystallographica, B75, 495504.Google Scholar
Gemmi, M., Mugnaioli, E., Gorelik, T.E., Kolb, U., Palatinus, L., Boullay, P., Hovmoller, S. and Abrahams, J.P. (2019) 3D Electron Diffraction: The nanocrystallography revolution. ACS Central Science, 5, 13151329.CrossRefGoogle ScholarPubMed
Jia, D., Fe, Z., Zhang, H. and Zhao, C. (1988) The first discovery of Cd-freibergite in China. Acta Mineralogica Sinica, 8, 136137.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1986) Compositional trends in tetrahedrite. The Canadian Mineralogist, 24, 385397.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1987) Effect of substitutions on the cell dimensions of tetrahedrite. The Canadian Mineralogist, 25, 237244.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1988) Crystal chemistry of tetrahedrite. American Mineralogist, 73, 389397.Google Scholar
Kenngott, G.A. (1853) Das Mohs'sche Mineralsystem, dem gegenwärtigen Standpuncte der Wissenschaft gemäss bearbeitet. Gerold Verlag, Wien.Google Scholar
Klar, P.B., Brazda, P., Krysiak, Y., Klementova, M. and Palatinus, L. (2021) Absolute configuration directly determined from 3D electron diffraction data. Acta Crystallographica, A77, C210.Google Scholar
Lattanzi, P., Zuddas, P. and Frau, F. (1998) Otavite from Montevecchio, Sardinia, Italy. Mineralogical Magazine, 62, 367370.CrossRefGoogle Scholar
Lattanzi, P., Maurizio, C., Meneghini, C., Giudici, G.D.E. and Podda, F. (2010) Uptake of Cd in hydrozincite, Zn5(CO3)2(OH)6: evidence from X-ray absorption spectroscopy and anomalous X-ray diffraction. European Journal of Mineralogy, 22, 557564.CrossRefGoogle Scholar
Lexa, J., Štohl, J. and Konečný, V. (1999) The Banská Štiavnica ore district: relationship between metallogenetic processes and the geological evolution of a stratovolcano. Mineralium Deposita, 34, 639654.CrossRefGoogle Scholar
Mikuš, T., Majzlan, J., Sejkora, J., Vlasáč, J., Steciuk, G., Plášil, J., Rößler, C. and Matthes, C. (2022) Argentotetrahedrite-(Cd), IMA 2022-053, in: CNMNC Newsletter 69. Mineralogical Magazine, 86, 988992, https://doi.org/10.1180/mgm.2022.115.Google Scholar
Momma, K. and Izumi, F. (2020) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Palatinus, L. (2013) The charge-flipping algorithm in crystallography. Acta Crystallographica, B69, 116.Google Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Palatinus, L., Petrícek, V. and Corrêa, C.A. (2015a) Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallographica, A71, 235244.Google Scholar
Palatinus, L., Corrêa, C.A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M.C., Cámara, F. and Petříček, V. (2015b) Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallographica, B71, 740751.Google Scholar
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. and Klementová, M. (2019) Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallographica, B75, 512522.Google Scholar
Pattrick, R.A.D. (1978) Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum, Perthshire, Scotland. Mineralogical Magazine, 42, 286288.CrossRefGoogle Scholar
Pattrick, R.A.D. and Hall, A.J. (1983) Silver substitution into zinc, cadmium and iron tetrahedrites. Mineralogical Magazine, 47, 441451.CrossRefGoogle Scholar
Peterson, R.C. and Miller, I. (1986) Crystal structure and cation distribution in freibergite and tetrahedrite. Mineralogical Magazine, 50, 717721.CrossRefGoogle Scholar
Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift Für Kristallographie—Crystalline Materials, 229, 345352.CrossRefGoogle Scholar
Plana-Ruiz, S., Krysiak, Y., Portillo, J., Alig, E., Estrade, S., Peiro, F. and Kolb, U. (2020) Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement. Ultramicroscopy, 211, 112951.CrossRefGoogle ScholarPubMed
Qu, K., Sima, X., Gu, X., Sun, W., Fan, G., Hou, Z., Ni, P., Wang, D., Yang, Z. and Wang, Y. (2021) Kenoargentotetrahedrite-(Zn), IMA 2020-075. CNMNC Newsletter 59. Mineralogical Magazine, 85, 278281, https://doi.org/10.1180/mgm.2021.5Google Scholar
Riley, J.F. (1974) The tetrahedrite–freibergite series, with reference to the Mount Isa Pb–Zn–Ag orebody. Mineralium Deposita, 9, 117124.CrossRefGoogle Scholar
Rozhdestvenskaya, I.V., Zayakina, N.V. and Samusikov, V.P. (1993) Crystal structure features of minerals from a series of tetrahedrite-freibergite. Mineralogiceskij Zhurnal, 15, 917 [in Russian].Google Scholar
Sejkora, J., Biagioni, C., Vrtiška, L. and Moëlo, Y. (2021) Zvěstovite-(Zn), Ag6(Ag4Zn2)As4S13, a new tetrahedrite-group mineral from Zvěstov, Czech Republic. Mineralogical Magazine, 85, 716724.CrossRefGoogle Scholar
Sejkora, J., Biagioni, C., Števko, M., Raber, T., Roth, P. and Vrtiška, L. (2022) Argentotetrahedrite-(Zn), Ag6(Cu4Zn2)Sb4S13, a new member of the tetrahedrite group. Mineralogical Magazine, 86, 319330, https://doi.org/10.1180/mgm.2022.21CrossRefGoogle Scholar
Škácha, P., Sejkora, J., Palatinus, L., Makovicky, E., Plášil, J., Macek, I. and Goliáš, V. (2016) Hakite from Příbram, Czech Republic: compositional variability, crystal structure and the role in Se mineralization. Mineralogical Magazine, 80, 11151128.CrossRefGoogle Scholar
Smolka, J., Skaviniak, M., Valko, P., Kámen, M., Daubner, J., Petr, K., Gwerk, E., Novák, P., Kováč, P., Ružiaková, B. and Mjartanová, H. (1988) Final report of the project Rudno-Brehy-Pukanec. Open File Report, Geological Survey of Slovak Republic, Bratislava, 108 pp [in Slovak].Google Scholar
Spiridonov, E.M., Sokolova, N.G., Gapeev, A.K., Dashevskaya, D.M., Evstigneeva, T.L., Chvileva, T.N., Demidov, V.G., Balashov, E.P. and Shulga, V.I. (1986) A new mineral – argentotennantite. Doklady Akademii Nauk SSSR, 290, 206210 [in Russian].Google Scholar
Štohl, J., Lexa, J., Kaličiak, M. and Bacsó, Z. (1993) Metallogenesis of base metal stockwork mineralisation in Western Carpathian Neogene volcanic rocks. Open File Report, Geological Survey of Slovak Republic, Bratislava, 87pp [in Slovak].Google Scholar
Voropayev, V.K., Spiridonov, E.M. and Shchibrik, V.I. (1988) Cd-tetrahedrite, first find in the USSR. Transactions of the USSR Academy of Sciences, Earth Science Sections, 300, 131133.Google Scholar
Voudouris, P.C., Spry, P.G., Sakellaris, G.A. and Mavrogonatos, C. (2011) A cervelleite-like mineral and other Ag-Cu-Te-S minerals [Ag2CuTeS and (Ag,Cu)2TeS] in gold-bearing veins in metamorphic rocks of the Cycladic Blueschist Unit, Kallianou, Evia Island, Greece. Mineralogy and Petrology, 101, 169183.CrossRefGoogle Scholar
Warr, L. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320, doi:10.1180/mgm.2021.43.CrossRefGoogle Scholar
Weissenbach, C.G.A. von (1831) Ueber die Gehalte der beym sächsischen Bergbau vorkommenden Silbererze. Kalender für den Sächsischen Bergund Hüttenmann auf das Jahr 1831, 223248.Google Scholar
Welch, M.D., Stanley, C.J., Spratt, J. and Mills, S.J. (2018) Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+, Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group. European Journal of Mineralogy, 30, 11631172.CrossRefGoogle Scholar
Wu, P., Gu, X., Qu, K., Yang, H. and Wang, Y. (2021) Argentotetrahedrite-(Hg), IMA 2020-079. In: CNMNC Newsletter 59. Mineralogical Magazine, 85, 278281.Google Scholar
Supplementary material: File

Mikuš et al. supplementary material

Mikuš et al. supplementary material

Download Mikuš et al. supplementary material(File)
File 204.9 KB